Lecture 2: Introduction to Collider Physics

Zhao-Huan Yu (余钊焕)

ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, the University of Melbourne http://yzhxxzxy.github.io

Frontiers in Dark Matter, Neutrinos, and Particle Physics Theoretical Physics Summer School

Colliders

Processes

Homework

Past and Current High Energy Colliders

• **TEVATRON**: $p\bar{p}$ collider, 1987-2011

Circumference: 6.28 km

Collision energy: $\sqrt{s} = 1.96 \text{ TeV}$

Luminosity: $\mathcal{L} \sim 4.3 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

Detectors: CDF, DØ

• **LEP**: e^+e^- collider, 1989-2000

Circumference: 26.66 km

Collision energy: $\sqrt{s} = 91 - 209 \text{ GeV}$

Luminosity: $\mathcal{L} \sim (2-10) \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$

Detectors: ALEPH, DELPHI, OPAL, L3

• LHC: pp (pPb, PbPb) collider, 2009-

Circumference: 26.66 km

Collision energy: $\sqrt{s} = 7, 8, 13, 14 \text{ TeV}$

Luminosity: $\mathcal{L} \sim (1-5) \times 10^{34} \ \mathrm{cm^{-2} \ s^{-1}}$

Detectors: ATLAS, CMS, ALICE, LHCb

Future Projects

• ILC: International Linear Collider e^+e^- collider, $\sqrt{s}=250~{\rm GeV}-1~{\rm TeV}$ $\mathcal{L}\sim 1.5\times 10^{34}~{\rm cm}^{-2}~{\rm s}^{-1}$ Detectors: SiD, ILD

- **CEPC**: Circular Electron-Positron Collider (China) e^+e^- collider, $\sqrt{s}\sim 240-250$ GeV, $\mathcal{L}\sim 1.8\times 10^{34}$ cm⁻² s⁻¹
- SPPC: Super Proton-Proton Collider (China) pp collider, $\sqrt{s} \sim 50-70$ TeV, $\mathcal{L} \sim 2.15 \times 10^{35}$ cm⁻² s⁻¹
- FCC: Future Circular Collider (CERN)
 - **FCC-ee**: e^+e^- collider, $\sqrt{s} \sim 90 350$ GeV, $\mathcal{L} \sim 5 \times 10^{34}$ cm⁻² s⁻¹
 - FCC-hh: pp collider, $\sqrt{s} \sim 100$ TeV, $\mathcal{L} \sim 5 \times 10^{34}$ cm⁻² s⁻¹
- CLIC: Compact Linear Collider, $\sqrt{s} \sim 1-3$ TeV, $\mathcal{L} \sim 6 \times 10^{34}$ cm⁻² s⁻¹

Particle Production

- Units for cross section σ : 10^{-24} cm $^2=1$ b = 10^{12} pb = 10^{15} fb = 10^{18} ab
- Units for instantaneous luminosity \mathcal{L} : $10^{34}~\text{cm}^{-2}~\text{s}^{-1} \simeq 315~\text{fb}^{-1}~\text{year}^{-1}$
- Integrated luminosity $\int \mathcal{L}(t)dt$ indicates the data amount
- For a process with a cross section σ , event number $N = \sigma \int \mathcal{L}(t)dt$

Particle Decay

- Particle decay is a Poisson process
- In the rest frame, the probability that a particle survives for time t before decaying is given by an exponential distribution:

$$P(t) = e^{-t/\tau} = e^{-\Gamma t},$$

where τ is the mean lifetime

- $\Gamma \equiv 1/\tau$ is called the **decay width**
- The mass of an unstable particle can be reconstructed by the total invariant mass of its products m_{inv} , which obeys a **Breit-Wigner distribution**

The central value m is conventionally called the mass of the parent particle

Colliders

Partial Decay Width and Scattering Cross Section

- The probability that a decay mode j happens in a decay event is called the **branching ratio** BR(j), while $\Gamma_i = \Gamma \cdot BR(j)$ is called the **partial width** Normalization condition: $\sum_{i} \mathrm{BR}(j) = \frac{1}{\Gamma} \sum_{i} \Gamma_{j} = 1$, i.e., $\Gamma = \sum_{j} \Gamma_{j}$
- The partial width for an *n*-body decay mode *j*:

$$\Gamma_{j} = \frac{1}{2m} \int \prod_{i=1}^{n} \frac{d^{3} p_{i}}{(2\pi)^{3} 2E_{i}} (2\pi)^{4} \delta^{(4)} \left(p^{\mu} - \sum_{i} p_{i}^{\mu}\right) |\mathcal{M}_{j}|^{2}$$

• The cross section for a $2 \rightarrow n$ scattering process with initial states \mathcal{A} and \mathcal{B} :

$$\sigma = \frac{1}{2E_{\mathcal{A}}2E_{\mathcal{B}}|\mathbf{v}_{\mathcal{A}} - \mathbf{v}_{\mathcal{B}}|} \int \prod_{i=1}^{n} \frac{d^{3}p_{i}}{(2\pi)^{3}2E_{i}} (2\pi)^{4} \delta^{(4)} \left(p_{\mathcal{A}}^{\mu} + p_{\mathcal{B}}^{\mu} - \sum_{i} p_{i}^{\mu}\right) |\mathcal{M}|^{2}$$

- The 4-dimensional delta function respects the 4-momentum conservation
- The **invariant amplitude** \mathcal{M} is determined by the underlying physics model

Parton Distribution Functions

Cross section for a **hadron scattering** process $h_1h_2 \rightarrow X$:

$$\sigma(h_1 h_2 \to X) = \sum_{ij} \int dx_1 dx_2 \, f_{i/h_1}(x_1, \mu_F^2) \, f_{j/h_2}(x_2, \mu_F^2) \, \hat{\sigma}_{ij \to X}(x_1 x_2 s, \mu_F^2),$$

- $\hat{\sigma}_{ij\to X}$: cross section for a parton scattering process $ij\to X$
- $f_{i/h}(x, \mu_F^2)$: parton distribution function (PDF) for a parton i emerging from a hadron h with $x \equiv p_i^{\mu}/p_h^{\mu}$ at a factorization scale μ_F
- 4-momentum conservation:

$$\int_{0}^{1} dx \sum_{i} x f_{i/p}(x, \mu_{F}^{2}) = 1$$

$$i = g, d, u, s, c, b, \bar{d}, \bar{u}, \bar{s}, \bar{c}, \bar{b}$$

• Valence quarks in a proton are udd:

$$\int_{0}^{1} dx [f_{u/p}(x, \mu_{F}^{2}) - f_{\bar{u}/p}(x, \mu_{F}^{2})] = 2$$

$$\int_{0}^{1} dx [f_{d/p}(x, \mu_{F}^{2}) - f_{\bar{d}/p}(x, \mu_{F}^{2})] = 1$$

PDFs for proton

[PDG 2014]

 Processes
 SM Particles
 Reconstruction
 Simulation
 Kinematic Variables
 Homewor

 ○
 00000
 000000000
 00
 00
 00
 0

 Processes
 SM Particles
 Reconstruction
 Simulation
 Kinematic Variables
 Homework

 ○
 0000●
 000000000
 00000000
 0
 0
 0
 0

 Processes
 SM Particles
 Reconstruction
 Simulation
 Kinematic Variables
 Homework

 ○
 0000●
 000000000
 00000000
 0
 0
 0
 0

 Processes
 SM Particles
 Reconstruction
 Simulation
 Kinematic Variables
 Homework

 ○
 0000●
 0000000000
 000000000
 00
 000
 00
 0

Elementary Particles

Elementary Particles in the Standard Model (SM)

- Three families of fermions
 - Charged leptons: electron (e), muon (μ), tau (τ)
 - Neutrinos: electron neutrino (v_e) , muon neutrino (v_u) , tau neutrino (v_τ)
 - Up-type quarks: up quark (u), charm quark (c), top quark (t)
 - Down-type quarks: down quark (d), strange quark (s), bottom quark (b)
- Gauge bosons
 - Electroweak: photon (γ) , W^{\pm} , Z^{0}
 - Strong: gluons (g)
- **Scalar boson**: Higgs boson (H⁰)

Interactions in the Standard Model: strong interaction electromagnetic (EM) interaction weak interaction

Composite Particles

• **Nuclei**: composed of nucleons (*p* and *n*) *E.g.*, nuclei of D, T, ³He, and ⁴He

- Hadrons: strongly interacting bound states composed of valence quarks
 - Mesons: composed of a quark and an antiquark E.g., $\pi^+(u\bar{d})$, $\pi^-(d\bar{u})$, $\pi^0 \left[(u\bar{u} d\bar{d})/\sqrt{2} \right]$
 - Baryons: composed of three quarks E.g., proton p(uud), neutron n(udd), $\Lambda^0(uds)$

Spin-1/2 baryon 20-plet

Spin-3/2 baryon 20-plet

Pseudoscalar meson 16-plet

Vector meson 16-plet

Typical Decay Processes in the SM

- **1** W^{\pm} gauge boson, m = 80.4 GeV, $\Gamma = 2.1$ GeV
 - Weak decay $W^+ \rightarrow c\bar{s}/u\bar{d}$, BR = 67.4%
 - Weak decay $W^+ \rightarrow \tau^+ \nu_{\tau}$, BR = 11.4%
 - Weak decay $W^+ \rightarrow e^+ \nu_e$, BR = 10.7%
 - Weak decay $W^+ \rightarrow \mu^+ \nu_\mu$, BR = 10.6%

- 2 Z^0 gauge boson, m = 91.2 GeV, $\Gamma = 2.5$ GeV
 - Weak decay $Z^0 \rightarrow u\bar{u}/d\bar{d}/c\bar{c}/s\bar{s}/b\bar{b}$, BR = 69.9%
 - Weak decay $Z^0 \rightarrow \nu_e \bar{\nu}_e / \nu_\mu \bar{\nu}_\mu / \nu_\tau \bar{\nu}_\tau$, BR = 20%
 - Weak decay $Z^0 \rightarrow \tau^+ \tau^-$, BR = 3.37%
 - Weak decay $Z^0 \rightarrow \mu^+ \mu^-$, BR = 3.37%
 - Weak decay $Z^0 \rightarrow e^+e^-$, BR = 3.36%

3 Higgs boson H^0 , m = 125 GeV, expected $\Gamma = 4$ MeV

•
$$H^0 \rightarrow b\bar{b}$$
, expected BR = 58%

•
$$H^0 \to W^\pm W^{\mp *} (\to f \bar{f}')$$
, expected BR = 21%

•
$$H^0 \rightarrow gg$$
, expected BR = 8.2%

•
$$H^0 \rightarrow \tau^+ \tau^-$$
, expected BR = 6.3%

•
$$H^0 \rightarrow c\bar{c}$$
, expected BR = 2.9%

•
$$H^0 \rightarrow Z^0 Z^{0*} (\rightarrow f \bar{f})$$
, expected BR = 2.6%

•
$$H^0 \rightarrow \gamma \gamma$$
, expected BR = 0.23%

•
$$H^0 \rightarrow Z^0 \gamma$$
, expected BR = 0.15%

$$H^{0} - \cdots \qquad b/\tau^{-}/c$$

$$\bar{b}/\tau^{+}/\bar{c}$$

$$W^{\pm}/Z^{0}$$

$$H^0 - - - \underbrace{t}_{t} \underbrace{ee}_{g}$$

- **Muon** μ^{\pm} , m = 105.66 MeV, $\tau = 2.2 \times 10^{-6}$ s
 - Weak decay $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$, BR $\simeq 100\%$
- **5** Tau τ^{\pm} , m = 1.777 GeV, $\tau = 2.9 \times 10^{-13}$ s
 - Weak decay $\tau^- \rightarrow \text{hadrons} + \nu_{\tau}$, BR = 64.8%
 - BR($\tau^- \to \pi^- \pi^0 \nu_{\pi}$) = 25.5%, BR($\tau^- \to \pi^- \nu_{\pi}$) = 10.8%
 - Weak decay $\tau^- \rightarrow e^- \bar{\nu}_e \nu_{\tau}$, BR = 17.8%
 - Weak decay $\tau^- \rightarrow \mu^- \bar{\nu}_{\mu} \nu_{\tau}$, BR = 17.4%
- **Top quark** t, m = 173 GeV, $\Gamma = 1.4$ GeV
 - Weak decay $t \rightarrow bW^+$, BR $\simeq 100\%$

- **10** π^0 meson $\left[(u\bar{u} d\bar{d})/\sqrt{2} \right]$, m = 135.0 MeV, $\tau = 8.5 \times 10^{-17}$ s
 - EM decay $\pi^0 \rightarrow \gamma \gamma$, BR = 98.8%
 - EM decay $\pi^0 \rightarrow e^+e^-\gamma$, BR = 1.2%

- **1** π^{\pm} meson $[\pi^{+}(u\bar{d}), \pi^{-}(d\bar{u})], m = 139.6 \text{ MeV}, \tau = 2.6 \times 10^{-8} \text{ s}$
 - Weak decay $\pi^+ \to \mu^+ \nu_\mu$, BR = 99.9877%
 - Weak decay $\pi^+ \rightarrow e^+ \nu_e$, BR = 0.0123%
- **9** K^{\pm} meson $[K^{+}(u\bar{s}), K^{-}(s\bar{u})], m = 493.7 \text{ MeV}, \tau = 1.2 \times 10^{-8} \text{ s}$
 - Weak decay $K^+ \rightarrow \mu^+ \nu_\mu$, BR = 63.6%
 - Weak decay $K^+ \rightarrow \pi^+ \pi^0$, BR = 20.7%

The $\bar{K}^0(s\bar{d})$ meson is the antiparticle of $K^0(d\bar{s})$, with the same mass 497.6 MeV. Under the CP transformation, $K^0 \longleftrightarrow -\bar{K}^0$, so they can be mixed into two CP eigenstates: CP-even state $K^0_S = (K^0 - \bar{K}^0)/\sqrt{2}$ and CP-odd state $K^0_L = (K^0 + \bar{K}^0)/\sqrt{2}$. The CP conservation in weak interactions allows K^0_S decaying into $\pi^+\pi^-$ and $\pi^0\pi^0$, but forbids K^0_L decaying into $\pi^+\pi^-$ or $\pi^0\pi^0$, resulting in a short lifetime for K^0_S and a long lifetime for K^0_L .

- **1** K_S^0 meson, CP = +, m = 497.6 MeV, $\tau = 9.0 \times 10^{-11}$ s
 - Weak decay $K_{\rm S}^0 \rightarrow \pi^+\pi^-$, BR = 69.2%
 - Weak decay $K_S^0 \rightarrow \pi^0 \pi^0$, BR = 30.7%
- **1** K_L^0 meson, CP = -, m = 497.6 MeV, $\tau = 5.1 \times 10^{-8}$ s
 - Weak decay $K_{\rm L}^0 \to \pi^{\pm} e^{\mp} \nu_e / \pi^{\pm} \mu^{\mp} \nu_{\mu}$, BR = 67.6%
 - Weak decay $K_1^0 \to \pi^0 \pi^0 \pi^0 / \pi^+ \pi^- \pi^0$, BR = 32.1%

- **2** D^0 **meson** $(c\bar{u})$, m = 1.865 GeV, $\tau = 4.1 \times 10^{-13}$ s
 - Weak decay $D^0 \rightarrow K^- + \text{anything}$, BR $\simeq 54.7\%$
 - Weak decay $D^0 \to \bar{K}^0/K^0$ + anything, BR $\simeq 47\%$
 - Weak decay $D^0 \rightarrow \bar{K}^*(892)^- + \text{anything, BR} \simeq 15\%$
- **3** D^{\pm} meson $[D^{+}(c\bar{d}), D^{-}(d\bar{c})], m = 1.870 \text{ GeV}, \tau = 1.0 \times 10^{-12} \text{ s}$
 - Weak decay $D^+ \to \bar{K}^0/K^0 + \text{anything, BR} \simeq 61\%$
 - Weak decay $D^+ \rightarrow K^- + \text{anything}$, BR $\simeq 25.7\%$
 - Weak decay $D^+ \to \bar{K}^*(892)^0$ + anything, BR $\simeq 23\%$
 - Weak decay $D^+ \rightarrow \mu^+ + \text{anything}$, BR $\simeq 17.6\%$

Colliders

- **4** B⁰ **meson** $(d\bar{b})$, m = 5.280 GeV, $\tau = 1.5 \times 10^{-12}$ s
 - Weak decay $B^0 \to K^{\pm}$ + anything, BR $\simeq 78\%$
 - Weak decay $B^0 \to \bar{D}^0 X$, BR $\simeq 47.4\%$
 - Weak decay $B^0 \rightarrow D^-X$, BR $\simeq 36.9\%$
 - Weak decay $B^0 \rightarrow \ell^+ \nu_\ell$ + anything, BR $\simeq 10.33\%$
- **6** B^{\pm} meson $[B^{+}(u\bar{b}), B^{-}(b\bar{u})], m = 5.279 \text{ GeV}, \tau = 1.6 \times 10^{-12} \text{ s}$
 - Weak decay $B^+ \to \bar{D}^0 X$, BR $\simeq 79\%$
 - Weak decay $B^0 \rightarrow \ell^+ \nu_\ell$ + anything, BR $\simeq 10.99\%$
 - Weak decay $B^+ \rightarrow D^- X$, BR $\simeq 9.9\%$
 - Weak decay $B^+ \to D^0 X$, BR $\simeq 8.6\%$

- **6** $\rho(770)$ **meson** $[(u\bar{u} d\bar{d})/\sqrt{2}]$, m = 775 MeV, $\Gamma = 149$ MeV
 - Strong decay $\rho \to \pi^+\pi^-/\pi^0\pi^0$, BR $\simeq 100\%$
- **1** $J/\psi(1S)$ **meson** $(c\bar{c})$, m = 3.097 GeV, $\Gamma = 92.9$ keV
 - Strong decay $J/\psi \rightarrow ggg \rightarrow \text{hadrons}$, BR = 64.1%
 - EM decay $J/\psi \rightarrow \gamma^* \rightarrow$ hadrons, BR = 13.5%
 - EM decay $J/\psi \to e^+ e^-/\mu^+ \mu^-$, BR = 11.9% $\rho^{\{}$
- **1** $\Upsilon(1S)$ **meson** $(b\bar{b}), m = 9.460$ GeV, $\Gamma = 54.0$ keV \bar{u}/\bar{d} π^{-}/π
 - Strong decay $\Upsilon \to ggg \to \text{hadrons}$, BR = 81.7%
 - **EM** decay $\Upsilon \to e^+ e^- / \mu^+ \mu^- / \tau^+ \tau^-$, BR = 7.46%

The Okubo-Zweig-lizuka (OZI) rule: any strong decay will be suppressed if, through only the removal of internal gluon lines, its diagram can be separated into two disconnected parts: one containing all initial state particles and one containing all final state particles.

Colliders

W.

 $\bar{\nu}_{\rho}$

- **10 Neutron** *n* (*udd*), m = 939.6 MeV, $\tau = 880$ s
 - Weak decay $n \to pe^-\bar{\nu}_e$, BR $\simeq 100\%$
- **a** Λ^0 **baryon** (*uds*), m = 1.116 GeV, $\tau = 2.6 \times 10^{-10}$ s
 - Weak decay $\Lambda^0 \rightarrow p \pi^-$, BR = 63.9%
 - Weak decay $\Lambda^0 \rightarrow n\pi^0$, BR = 35.8%
- **4** Σ^+ **baryon** (*uus*), m = 1.189 GeV, $\tau = 8.0 \times 10^{-11}$ s
 - Weak decay $\Sigma^+ \to p \pi^0$, BR = 51.6%
 - Weak decay $\Sigma^+ \rightarrow n\pi^+$, BR = 48.3%
- **2** Σ^{-} baryon (dds), m = 1.197 GeV, $\tau = 1.5 \times 10^{-10}$ s
 - Weak decay $\Sigma^- \rightarrow n\pi^-$, BR = 99.85%
- **3** Σ^0 **baryon** (*uds*), m = 1.193 GeV, $\tau = 7.4 \times 10^{-20}$ s
 - EM decay $\Sigma^0 \to \Lambda^0 \gamma$, BR $\simeq 100\%$
- **4** $\Delta^{0}(1232)$ **baryon** (*udd*), m = 1.232 GeV, $\Gamma = 117$ MeV
 - Strong decay $\Delta^0 \rightarrow n\pi^0/p\pi^-$, BR = 99.4%

Coordinate System in the Laboratory Frame

- The 3-momentum of a particle, \mathbf{p} , can be decomposed into a component $p_{\rm L}$, which is parallel to the beam line and a transverse component $p_{\rm T}$
- The **p** direction can be describe by a polar angle $\theta \in [0, \pi]$ and an azimuth angle $\phi \in [0, 2\pi)$

• The pseudorapidity $\eta \in (-\infty, \infty)$ is commonly used instead of θ

$$\eta \equiv -\ln\left(\tan\frac{\theta}{2}\right), \quad \theta = 2\tan^{-1}e^{-\eta}, \quad -\eta = -\ln\left(\tan\frac{\pi-\theta}{2}\right)$$

η	0	0.5	1	1.5	2	2.5	3	4	5	10
θ	90°	62.5°	40.4°	25.2°	15.4°	9.4°	5.7°	2.1°	0.77°	0.005°

- The 4-momentum of an on-shell particle can be described by $\{m, p_T, \eta, \phi\}$
- Particles with higher $p_{\rm T}$ are more likely related to hard scattering, so $p_{\rm T}$, rather than the energy E, is generally used for **sorting** particles or jets

Particle Stability

Mean **decay length** of a relativistic unstable particle:

$$d = \beta \gamma \tau \simeq \gamma \left(\frac{\tau}{10^{-12} \text{ s}}\right) 300 \text{ } \mu\text{m}, \quad \gamma = \frac{E}{m} = \frac{1}{\sqrt{1 - \beta^2}}$$

- Stable particles: $p, e^{\pm}, \gamma, \nu_e, \nu_{\mu}, \nu_{\tau}$, dark matter particle
- Quasi-stable particles $(\tau \gtrsim 10^{-10} \text{ s})$: μ^{\pm} , π^{\pm} , K^{\pm} , n, Λ^{0} , $K_{\rm L}^{0}$, etc. These particles may travel into outer layer detectors
- Particles with $\tau \simeq 10^{-13}-10^{-10}$ s: τ^{\pm} , $K_{\rm S}^{0}$, D^{0} , D^{\pm} , B^{0} , B^{\pm} , etc. These particles may travel a distinguishable distance ($\gtrsim 100~\mu{\rm m}$) before decaying, resulting in a displaced secondary vertex
- Short-lived resonances ($\tau \lesssim 10^{-13}$ s): W^{\pm} , Z^{0} , t, H^{0} , π^{0} , ρ^{0} , ρ^{\pm} , etc. These particles will decay instantaneously and can only be reconstructed from their decay products

Particle Detectors at Colliders

	γ	e^{\pm}	μ^{\pm}	Charged hadrons	Neutral hadrons	v, DM
Tracker, $ \eta \lesssim 2.5$	×	√	√	\checkmark	×	×
ECAL, $ \eta \lesssim 3$	4	4	√	\checkmark	×	×
HCAL, $ \eta \lesssim 5$	×	×	×	•	•	×
Muon detectors, $ \eta \lesssim 2.4$	×	×	√	×	×	×

Particle Detectors at Colliders

	γ	e^{\pm}	μ^{\pm}	Charged hadrons	Neutral hadrons	ν, DM
Tracker, $ \eta \lesssim 2.5$	×	√	√	√	Missing	\\X\\
ECAL, $ \eta \lesssim 3$	4	4	√	√	Missing	- X
HCAL, $ \eta \lesssim 5$	×	×	×	•	energy	×
Muon detectors, $ \eta \lesssim 2.4$		×	√	×	#T	\

July 2017

A Candidate Event for $H^0 \rightarrow ZZ^* \rightarrow \mu^+\mu^-\mu^+\mu^-$

A Dijet Event

Partons and Jets

A **jet** is a collimated bunch of particles (mainly hadrons) flying roughly in the same direction, probably originated from a **parton** produced in hard scattering

[From M. Cacciari's talk (2013)]

Jet Clustering Algorithms

An observable is infrared and collinear (IRC) safe if it remains unchanged in the limit of a collinear splitting or an infinitely soft emission

- Cone algorithms: find coarse regions of energy flow Combine particles i and j when $\Delta R_{ij} = \sqrt{(\eta_i - \eta_i)^2 + (\phi_i - \phi_i)^2} < R$, and find stable cones with a radius R
 - Cone algorithms with seeds: find only some of the stable cones; IRC unsafe
 - SISCone algorithm: seedless; find all stable cones; IRC safe
- Sequential recombination algorithms: starting from closest particles

Distance
$$d_{ij} = \min \left(k_{\mathrm{T},i}^{2p}, k_{\mathrm{T},j}^{2p}\right) \left(\frac{\Delta R_{ij}}{R}\right)^2$$
 for transverse momenta $k_{\mathrm{T},i}$ and $k_{\mathrm{T},j}$

- k_T algorithm: p = 1; starting from soft particles; IRC safe
- Cambridge-Aachen algorithm: p = 0; starting from close directions; IRC safe
- Anti- k_T algorithm: p = -1; starting from hard particles; IRC safe

[Cacciari, Salam, Soyez, arXiv:0802.1189, JHEP]

b-jets and τ -jets

Jets originated from b quarks and tau leptons can be distinguished from jets originated from light quarks and gluons via tagging techniques using various discriminating variables

- b-jets: tagging efficiency $\sim 70\%$
 - B mesons (e.g., B^0 , B^{\pm}) result in displaced vertices
 - Numbers of soft electrons and soft muons are more than other jets
- τ -jets from hadronically decaying taus
 - 1-prong modes (BR = 50%): 1 charged meson in the decay products, medium tagging efficiency ~ 60%
 - 3-prong modes (BR = 15%): 3 charged mesons in the decay products, medium tagging efficiency $\sim 40\%$

[ATLAS coll., CONF-2014-004]

Number of primary vertices

olliders Processes SM Particles Reconstruction Simulation Kinematic Variables Homework

O 0000 000000000 00000000 ●O 000

ME-PS Matching

- Matrix element: fixed order calculation for hard scattering diagrams
 Valid when partons are hard and well separated
- Parton shower: process-independent calculation based on QCD
 Valid when partons are soft and/or collinear
- ME-PS Matching: avoids double counting to yield correct distributions

[From J. Alwall's talk]

Kinematic Variables

Although the same final states may come from various processes, we can use many **kinematic variables**, each of which catches a particular feature, to discriminate among different processes in data analyses

- Invariant mass $m_{\rm inv} \equiv \sqrt{(p_1+p_2+\cdots+p_i)^2}$ $m_{\rm inv}$ is commonly used to reconstruct the mass of an unstable particle from its decay products
- **2** Recoil mass m_{rec} at e^+e^- colliders
 - \P For a process $e^+ + e^- \to 1 + 2 + \cdots + n$, the recoil mass of Particle 1 is constructed by $m_{1, \text{rec}} \equiv \sqrt{[p_{e^+} + p_{e^-} (p_2 + \cdots + p_n)]^2}$
 - $\ensuremath{\mathfrak{S}}$ For mass measurement of a particle at e^+e^- colliders, we can utilize not only its decay products, but also the associated produced particles
- **1** Missing transverse energy $\not \!\! E_T \equiv |\not \!\! p_T|$, $\not \!\! p_T \equiv -\sum_i p_T^i$ $\not \!\! E_T$ is genuinely induced by **neutrinos** or **DM particles**, but may also be a result of imperfect detection of visible particles

3 Scalar sum of $p_{\rm T}$ of all jets $H_{\rm T} \equiv \sum_i p_{\rm T}^{j_i}$

 H_{T} characterizes the energy scale of jets from hard scattering

- **The entire of Schools** $m_{\rm eff} \equiv E_{\rm T} + H_{\rm T}$ $m_{\rm eff}$ characterizes the energy scale of hard scattering processes that involve both jets and genuine $E_{\rm T}$ sources, e.g., supersymmetric particle production
- **1** Transverse mass $m_{\rm T}$ for semi-invisible decays
 - \P For a 2-body decay process $P \to \nu + i$ with a visible product ν and an invisible product i (e.g., $W \to \ell \, \nu_\ell$ and $\tilde{\chi}_1^\pm \to \pi^\pm \tilde{\chi}_1^0$), define

$$m_{
m T} \equiv \sqrt{m_{
m v}^2 + m_i^2 + 2(E_{
m T}^{
m v} E_{
m T}^i - {f p}_{
m T}^{
m v} \cdot {f p}_{
m T}^i)} \ \ {
m with} \ \ E_{
m T}^{
m v,i} \equiv \sqrt{m_{
m v,i}^2 + |{f p}_{
m T}^{
m v,i}|^2}$$

and $\mathbf{p}_{\mathrm{T}}^{i} = \mathbf{p}_{\mathrm{T}}$, and thus m_{T} will be bounded by $m_{\mathrm{P}} \colon m_{\mathrm{T}} \leq m_{\mathrm{P}}$

- In practice, m_v is often small, while m_i is usually either zero or unknown; thus a commonly used m_T definition is $m_T = \sqrt{2(p_T^v \not\!\! E_T p_T^v \cdot \not\!\! p_T)}$

Colliders

① "Stransverse mass" $m_{\rm T2}$ for double semi-invisible decays

$$m_{\mathrm{T2}}(\mu_i) = \min_{\mathbf{p}_{\mathrm{T}}^1 + \mathbf{p}_{\mathrm{T}}^2 = \mathbf{p}_{\mathrm{T}}} \left\{ \max \left[m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\nu_1}, \mathbf{p}_{\mathrm{T}}^1; m_{\nu_1}, \mu_i), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\nu_2}, \mathbf{p}_{\mathrm{T}}^2; m_{\nu_2}, \mu_i) \right] \right\},$$

where μ_i is a trial mass for i and can be set to 0 under some circumstances

- $^{igoplus}m_{
 m T2}$ is the minimization of the larger $m_{
 m T}$ over all possible partitions
- ♠ If μ_i is equal to the true mass of i, $m_{\rm T2}$ will be bounded by m_P : $m_{\rm T2} \leq m_P$

[ATLAS coll., CONF-2012-082]

Processes

Colliders

- Draw one or two more Feynman diagrams for decay modes of every hadron listed in Pages 15–19
- 2 Show that the $\pi^+\pi^-$ and $\pi^0\pi^0$ systems have CP=+, and explain how the CP conservation affects the lifetimes of the K_s^0 and K_t^0 mesons, as mentioned in Page 15
- **3** Explain how the OZI rule significantly reduces the widths of the J/Ψ and Υ mesons, whose decay modes listed in Page 18
- Proof that the pseudorapidity η defined in Page 20 is the relativistic limit of the rapidity $y \equiv \tanh^{-1}(p_{\tau}/E)$
- Express every component of the 4-momentum of an on-shell particle, $p^{\mu} = (p^0, p^1, p^2, p^3)$, as a function of $\{m, p_T, \eta, \phi\}$ defined in Page 20
- **1** Proof the statement $m_T \leq m_P$ in Page 32