Lecture 2：Introduction to Collider Physics

Zhao－Huan Yu（余钊焕）

ARC Centre of Excellence for Particle Physics at the Terascale， School of Physics，the University of Melbourne http：／／yzhxxzxy．github．io

Frontiers in Dark Matter，Neutrinos，and Particle Physics Theoretical Physics Summer School

Sun Yat－Sen University，Guangzhou July 27－28， 2017

Past and Current High Energy Colliders

- TEVATRON: $p \bar{p}$ collider, 1987-2011

Circumference: 6.28 km
Collision energy: $\sqrt{s}=1.96 \mathrm{TeV}$
Luminosity: $\mathcal{L} \sim 4.3 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Detectors: CDF, D \varnothing

- LEP: $e^{+} e^{-}$collider, 1989-2000

Circumference: 26.66 km
Collision energy: $\sqrt{s}=91-209 \mathrm{GeV}$
Luminosity: $\mathcal{L} \sim(2-10) \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Detectors: ALEPH, DELPHI, OPAL, L3

- LHC: pp ($p \mathrm{~Pb}, \mathrm{PbPb}$) collider, 2009-

Circumference: 26.66 km
Collision energy: $\sqrt{s}=7,8,13,14 \mathrm{TeV}$ Luminosity: $\mathcal{L} \sim(1-5) \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ Detectors: ATLAS, CMS, ALICE, LHCb

The Tevatron accelerator

Sourcer Fermilab

Future Projects

- ILC: International Linear Collider $e^{+} e^{-}$collider, $\sqrt{s}=250 \mathrm{GeV}-1 \mathrm{TeV}$ $\mathcal{L} \sim 1.5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Detectors: SiD, ILD

- CEPC: Circular Electron-Positron Collider (China) $e^{+} e^{-}$collider, $\sqrt{s} \sim 240-250 \mathrm{GeV}, \mathcal{L} \sim 1.8 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- SPPC: Super Proton-Proton Collider (China) pp collider, $\sqrt{s} \sim 50-70 \mathrm{TeV}, \mathcal{L} \sim 2.15 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- FCC: Future Circular Collider (CERN)
- FCC-ee: $e^{+} e^{-}$collider, $\sqrt{s} \sim 90-350 \mathrm{GeV}, \mathcal{L} \sim 5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- FCC-hh: $p p$ collider, $\sqrt{s} \sim 100 \mathrm{TeV}, \mathcal{L} \sim 5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- CLIC: Compact Linear Collider, $\sqrt{s} \sim 1-3 \mathrm{TeV}, \mathcal{L} \sim 6 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Particle Production

- Units for cross section σ : $10^{-24} \mathrm{~cm}^{2}=1 \mathrm{~b}=10^{12} \mathrm{pb}=10^{15} \mathrm{fb}=10^{18} \mathrm{ab}$
- Units for instantaneous luminosity $\mathcal{L}: 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \simeq 315 \mathrm{fb}^{-1}$ year ${ }^{-1}$
- Integrated luminosity $\int \mathcal{L}(t) d t$ indicates the data amount
- For a process with a cross section σ, event number $N=\sigma \int \mathcal{L}(t) d t$

Particle Decay

- Particle decay is a Poisson process
- In the rest frame, the probability that a particle survives for time t before decaying is given by an exponential distribution:

$$
P(t)=e^{-t / \tau}=e^{-\Gamma t}
$$

where τ is the mean lifetime

- $\Gamma \equiv 1 / \tau$ is called the decay width
- The mass of an unstable particle can

Breit-Wigner distribution
 be reconstructed by the total invariant mass of its products $m_{\text {inv }}$, which obeys a Breit-Wigner distribution

$$
f\left(m_{\text {inv }}\right)=\frac{\Gamma}{2 \pi} \frac{1}{\left(m_{\text {inv }}-m\right)^{2}+\Gamma^{2} / 4}
$$

The central value m is conventionally called the mass of the parent particle

Partial Decay Width and Scattering Cross Section

- The probability that a decay mode j happens in a decay event is called the branching ratio $\operatorname{BR}(j)$, while $\Gamma_{j}=\Gamma \cdot \operatorname{BR}(j)$ is called the partial width Normalization condition: $\sum_{j} \operatorname{BR}(j)=\frac{1}{\Gamma} \sum_{j} \Gamma_{j}=1$, i.e., $\Gamma=\sum_{j} \Gamma_{j}$
- The partial width for an n-body decay mode j :

$$
\Gamma_{j}=\frac{1}{2 m} \int \prod_{i=1}^{n} \frac{d^{3} p_{i}}{(2 \pi)^{3} 2 E_{i}}(2 \pi)^{4} \delta^{(4)}\left(p^{\mu}-\sum_{i} p_{i}^{\mu}\right)\left|\mathcal{M}_{j}\right|^{2}
$$

- The cross section for a $2 \rightarrow n$ scattering process with initial states \mathcal{A} and \mathcal{B} :

$$
\sigma=\frac{1}{2 E_{\mathcal{A}} 2 E_{\mathcal{B}}\left|\mathbf{v}_{\mathcal{A}}-\mathbf{v}_{\mathcal{B}}\right|} \int \prod_{i=1}^{n} \frac{d^{3} p_{i}}{(2 \pi)^{3} 2 E_{i}}(2 \pi)^{4} \delta^{(4)}\left(p_{\mathcal{A}}^{\mu}+p_{\mathcal{B}}^{\mu}-\sum_{i} p_{i}^{\mu}\right)|\mathcal{M}|^{2}
$$

- The 4-dimensional delta function respects the 4-momentum conservation
- The invariant amplitude \mathcal{M} is determined by the underlying physics model

Parton Distribution Functions

Cross section for a hadron scattering process $h_{1} h_{2} \rightarrow X$:

$$
\sigma\left(h_{1} h_{2} \rightarrow X\right)=\sum_{i j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{\mathrm{F}}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{\mathrm{F}}^{2}\right) \hat{\sigma}_{i j \rightarrow X}\left(x_{1} x_{2} s, \mu_{\mathrm{F}}^{2}\right),
$$

- $\hat{\sigma}_{i j \rightarrow X}$: cross section for a parton scattering process $i j \rightarrow X$
- $f_{i / h}\left(x, \mu_{\mathrm{F}}^{2}\right)$: parton distribution function (PDF) for a parton i emerging from a hadron h with $x \equiv p_{i}^{\mu} / p_{h}^{\mu}$ at a factorization scale μ_{F}
- 4-momentum conservation:

$$
\begin{aligned}
& \int_{0}^{1} d x \sum_{i} x f_{i / p}\left(x, \mu_{\mathrm{F}}^{2}\right)=1 \\
& i=g, d, u, s, c, b, \bar{d}, \bar{u}, \bar{s}, \bar{c}, \bar{b}
\end{aligned}
$$

- Valence quarks in a proton are udd:

$$
\begin{aligned}
& \int_{0}^{1} d x\left[f_{u / p}\left(x, \mu_{\mathrm{F}}^{2}\right)-f_{\bar{u} / p}\left(x, \mu_{\mathrm{F}}^{2}\right)\right]=2 \\
& \int_{0}^{1} d x\left[f_{d / p}\left(x, \mu_{\mathrm{F}}^{2}\right)-f_{\bar{d} / p}\left(x, \mu_{\mathrm{F}}^{2}\right)\right]=1
\end{aligned}
$$

PDFs for proton [PDG 2014]

Typical Event

Elementary Particles

Elementary Particles in the Standard Model (SM)

- Three families of fermions
- Charged leptons: electron (e), muon (μ), tau (τ)
- Neutrinos: electron neutrino $\left(v_{e}\right)$, muon neutrino $\left(v_{\mu}\right)$, tau neutrino $\left(v_{\tau}\right)$
- Up-type quarks: up quark (u), charm quark (c), top quark (t)
- Down-type quarks: down quark (d), strange quark (s), bottom quark (b)
- Gauge bosons
- Electroweak: photon $(\gamma), W^{ \pm}, Z^{0}$
- Strong: gluons (g)
- Scalar boson: Higgs boson $\left(H^{0}\right)$

Interactions in the Standard Model: strong interaction electromagnetic (EM) interaction weak interaction

Composite Particles

- Nuclei: composed of nucleons (p and n) E.g., nuclei of D, T, ${ }^{3} \mathrm{He}$, and ${ }^{4} \mathrm{He}$
- Hadrons: strongly interacting bound states composed of valence quarks
- Mesons: composed of a quark and an antiquark

$$
\text { E.g., } \pi^{+}(u \bar{d}), \pi^{-}(d \bar{u}), \pi^{0}[(u \bar{u}-d \bar{d}) / \sqrt{2}]
$$

- Baryons: composed of three quarks E.g., proton $p(u u d)$, neutron $n(u d d), \Lambda^{0}(u d s)$

Spin-1/2 baryon 20-plet

Spin-3/2 baryon 20-plet

Vector meson 16-plet

Typical Decay Processes in the SM

(1) $W^{ \pm}$gauge boson, $m=80.4 \mathrm{GeV}, \Gamma=2.1 \mathrm{GeV}$

- Weak decay $W^{+} \rightarrow c \bar{s} / u \bar{d}, \mathrm{BR}=67.4 \%$
- Weak decay $W^{+} \rightarrow \tau^{+} v_{\tau}, \mathrm{BR}=11.4 \%$
- Weak decay $W^{+} \rightarrow e^{+} v_{e}, \mathrm{BR}=10.7 \%$
- Weak decay $W^{+} \rightarrow \mu^{+} v_{\mu}, \mathrm{BR}=10.6 \%$

(2) Z^{0} gauge boson, $m=91.2 \mathrm{GeV}, \Gamma=2.5 \mathrm{GeV}$
- Weak decay $Z^{0} \rightarrow u \bar{u} / d \bar{d} / c \bar{c} / s \bar{s} / b \bar{b}, B R=69.9 \%$
- Weak decay $Z^{0} \rightarrow v_{e} \bar{v}_{e} / v_{\mu} \bar{v}_{\mu} / v_{\tau} \bar{v}_{\tau}, \mathrm{BR}=20 \%$
- Weak decay $Z^{0} \rightarrow \tau^{+} \tau^{-}, \mathrm{BR}=3.37 \%$
- Weak decay $Z^{0} \rightarrow \mu^{+} \mu^{-}, \mathrm{BR}=3.37 \%$
- Weak decay $Z^{0} \rightarrow e^{+} e^{-}, B R=3.36 \%$
(3) Higgs boson $H^{0}, m=125 \mathrm{GeV}$, expected $\Gamma=4 \mathrm{MeV}$
- $H^{0} \rightarrow b \bar{b}$, expected $\mathrm{BR}=58 \%$
- $H^{0} \rightarrow W^{ \pm} W^{\mp *}\left(\rightarrow f \bar{f}^{\prime}\right)$, expected $\mathrm{BR}=21 \%$
- $H^{0} \rightarrow g g$, expected $\mathrm{BR}=8.2 \%$
- $H^{0} \rightarrow \tau^{+} \tau^{-}$, expected $\mathrm{BR}=6.3 \%$

- $H^{0} \rightarrow c \bar{c}$, expected $\mathrm{BR}=2.9 \%$

- $H^{0} \rightarrow Z^{0} \gamma$, expected $\mathrm{BR}=0.15 \%$

$\bar{f}^{\prime} / \bar{f}$

g

(9) Muon $\mu^{ \pm}, m=105.66 \mathrm{MeV}, \tau=2.2 \times 10^{-6} \mathrm{~s}$
- Weak decay $\mu^{-} \rightarrow e^{-} \bar{v}_{e} v_{\mu}, \mathrm{BR} \simeq 100 \%$
(6) Tau $\tau^{ \pm}, m=1.777 \mathrm{GeV}, \tau=2.9 \times 10^{-13} \mathrm{~s}$
- Weak decay $\tau^{-} \rightarrow$ hadrons $+v_{\tau}, \mathrm{BR}=64.8 \%$

- $\operatorname{BR}\left(\tau^{-} \rightarrow \pi^{-} \pi^{0} v_{\tau}\right)=25.5 \%, \operatorname{BR}\left(\tau^{-} \rightarrow \pi^{-} \nu_{\tau}\right)=10.8 \%$
- Weak decay $\tau^{-} \rightarrow e^{-} \bar{v}_{e} v_{\tau}, \mathrm{BR}=17.8 \%$
- Weak decay $\tau^{-} \rightarrow \mu^{-} \bar{v}_{\mu} v_{\tau}, \mathrm{BR}=17.4 \%$
(0) Top quark $t, m=173 \mathrm{GeV}, \Gamma=1.4 \mathrm{GeV}$
- Weak decay $t \rightarrow b W^{+}, \mathrm{BR} \simeq 100 \%$

(1) π^{0} meson $[(u \bar{u}-d \bar{d}) / \sqrt{2}]$, $m=135.0 \mathrm{MeV}, \tau=8.5 \times 10^{-17} \mathrm{~s}$
- EM decay $\pi^{0} \rightarrow \gamma \gamma, \mathrm{BR}=98.8 \%$
- EM decay $\pi^{0} \rightarrow e^{+} e^{-} \gamma, \mathrm{BR}=1.2 \%$

(1) $\pi^{ \pm}$meson $\left[\pi^{+}(u \bar{d}), \pi^{-}(d \bar{u})\right], m=139.6 \mathrm{MeV}, \tau=2.6 \times 10^{-8} \mathrm{~s}$
- Weak decay $\pi^{+} \rightarrow \mu^{+} v_{\mu}, \mathrm{BR}=99.9877 \%$
- Weak decay $\pi^{+} \rightarrow e^{+} v_{e}, \mathrm{BR}=0.0123 \%$
(0) $K^{ \pm}$meson $\left[K^{+}(u \bar{s}), K^{-}(s \bar{u})\right], m=493.7 \mathrm{MeV}, \tau=1.2 \times 10^{-8} \mathrm{~s}$
- Weak decay $K^{+} \rightarrow \mu^{+} \nu_{\mu}, \mathrm{BR}=63.6 \%$
- Weak decay $K^{+} \rightarrow \pi^{+} \pi^{0}, \mathrm{BR}=20.7 \%$

The $\bar{K}^{0}(s \bar{d})$ meson is the antiparticle of $K^{0}(d \bar{s})$, with the same mass 497.6 MeV . Under the CP transformation, $K^{0} \leftrightarrow-\bar{K}^{0}$, so they can be mixed into two $C P$ eigenstates: $C P$-even state $K_{\mathrm{S}}^{0}=\left(K^{0}-\bar{K}^{0}\right) / \sqrt{2}$ and $C P$-odd state $K_{\mathrm{L}}^{0}=\left(K^{0}+\bar{K}^{0}\right) / \sqrt{2}$. The CP conservation in weak interactions allows K_{S}^{0} decaying into $\pi^{+} \pi^{-}$and $\pi^{0} \pi^{0}$, but forbids K_{L}^{0} decaying into $\pi^{+} \pi^{-}$or $\pi^{0} \pi^{0}$, resulting in a short lifetime for K_{S}^{0} and a long lifetime for K_{L}^{0}.
(10) K_{S}^{0} meson, $C P=+, m=497.6 \mathrm{MeV}, \tau=9.0 \times 10^{-11} \mathrm{~s}$

- Weak decay $K_{\mathrm{s}}^{0} \rightarrow \pi^{+} \pi^{-}, \mathrm{BR}=69.2 \%$
- Weak decay $K_{\mathrm{s}}^{0} \rightarrow \pi^{0} \pi^{0}, \mathrm{BR}=30.7 \%$
(1) K_{L}^{0} meson, $C P=-, m=497.6 \mathrm{MeV}, \tau=5.1 \times 10^{-8} \mathrm{~s}$
- Weak decay $K_{\mathrm{L}}^{0} \rightarrow \pi^{ \pm} e^{\mp} v_{e} / \pi^{ \pm} \mu^{\mp} v_{\mu}, \mathrm{BR}=67.6 \%$
- Weak decay $K_{\mathrm{L}}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0} / \pi^{+} \pi^{-} \pi^{0}$, $\mathrm{BR}=32.1 \%$

(12) D^{0} meson $(c \bar{u}), m=1.865 \mathrm{GeV}, \tau=4.1 \times 10^{-13} \mathrm{~s}$
- Weak decay $D^{0} \rightarrow K^{-}+$anything, $B R \simeq 54.7 \%$
- Weak decay $D^{0} \rightarrow \bar{K}^{0} / K^{0}+$ anything, $B R \simeq 47 \%$
- Weak decay $D^{0} \rightarrow \bar{K}^{*}(892)^{-}+$anything, $B R \simeq 15 \%$
(3) $D^{ \pm}$meson $\left[D^{+}(c \bar{d}), D^{-}(d \bar{c})\right], m=1.870 \mathrm{GeV}, \tau=1.0 \times 10^{-12} \mathrm{~s}$
- Weak decay $D^{+} \rightarrow \bar{K}^{0} / K^{0}+$ anything, $B R \simeq 61 \%$
- Weak decay $D^{+} \rightarrow K^{-}+$anything, $B R \simeq 25.7 \%$
- Weak decay $D^{+} \rightarrow \bar{K}^{*}(892)^{0}+$ anything, $B R \simeq 23 \%$
- Weak decay $D^{+} \rightarrow \mu^{+}+$anything, $B R \simeq 17.6 \%$

(10) B^{0} meson $(d \bar{b}), m=5.280 \mathrm{GeV}, \tau=1.5 \times 10^{-12} \mathrm{~s}$
- Weak decay $B^{0} \rightarrow K^{ \pm}+$anything, $\mathrm{BR} \simeq 78 \%$
- Weak decay $B^{0} \rightarrow \bar{D}^{0} X, B R \simeq 47.4 \%$
- Weak decay $B^{0} \rightarrow D^{-} X, B R \simeq 36.9 \%$
- Weak decay $B^{0} \rightarrow \ell^{+} v_{\ell}+$ anything, $\mathrm{BR} \simeq 10.33 \%$
(15) $B^{ \pm}$meson $\left[B^{+}(u \bar{b}), B^{-}(b \bar{u})\right], m=5.279 \mathrm{GeV}, \tau=1.6 \times 10^{-12} \mathrm{~s}$
- Weak decay $B^{+} \rightarrow \bar{D}^{0} X, B R \simeq 79 \%$
- Weak decay $B^{0} \rightarrow \ell^{+} v_{\ell}+$ anything, $\mathrm{BR} \simeq 10.99 \%$
- Weak decay $B^{+} \rightarrow D^{-} X, B R \simeq 9.9 \%$
- Weak decay $B^{+} \rightarrow D^{0} X, B R \simeq 8.6 \%$

(1) $\rho(770)$ meson $[(u \bar{u}-d \bar{d}) / \sqrt{2}], m=775 \mathrm{MeV}, \Gamma=149 \mathrm{MeV}$
- Strong decay $\rho \rightarrow \pi^{+} \pi^{-} / \pi^{0} \pi^{0}, \mathrm{BR} \simeq 100 \%$
(1) $J / \psi(1 S)$ meson $(c \bar{c}), m=3.097 \mathrm{GeV}, \Gamma=92.9 \mathrm{keV}$
- Strong decay $J / \psi \rightarrow g g g \rightarrow$ hadrons, $B R=64.1 \%$
- EM decay $J / \psi \rightarrow \gamma^{*} \rightarrow$ hadrons, $\mathrm{BR}=13.5 \%$
- EM decay $J / \psi \rightarrow e^{+} e^{-} / \mu^{+} \mu^{-}, \mathrm{BR}=11.9 \%$

- Strong decay $\Upsilon \rightarrow g g g \rightarrow$ hadrons, $\mathrm{BR}=81.7 \%$
- EM decay $\Upsilon \rightarrow e^{+} e^{-} / \mu^{+} \mu^{-} / \tau^{+} \tau^{-}, \mathrm{BR}=7.46 \%$

The Okubo-Zweig-lizuka (OZI) rule: any strong decay will be suppressed if, through only the removal of internal gluon lines, its diagram can be separated into two disconnected parts: one containing all initial state particles and one containing all final state particles.

(1) Neutron $n(u d d), m=939.6 \mathrm{MeV}, \tau=880 \mathrm{~s}$

- Weak decay $n \rightarrow p e^{-} \bar{v}_{e}, B R \simeq 100 \%$
(20) Λ^{0} baryon (uds), $m=1.116 \mathrm{GeV}, \tau=2.6 \times 10^{-10} \mathrm{~s}$
- Weak decay $\Lambda^{0} \rightarrow p \pi^{-}, \mathrm{BR}=63.9 \%$
- Weak decay $\Lambda^{0} \rightarrow n \pi^{0}, B R=35.8 \%$
(21) Σ^{+}baryon (uus), $m=1.189 \mathrm{GeV}, \tau=8.0 \times 10^{-11} \mathrm{~s}$
- Weak decay $\Sigma^{+} \rightarrow p \pi^{0}, \mathrm{BR}=51.6 \%$

- Weak decay $\Sigma^{+} \rightarrow n \pi^{+}, \mathrm{BR}=48.3 \%$
(23) Σ^{-}baryon (dds), $m=1.197 \mathrm{GeV}, \tau=1.5 \times 10^{-10} \mathrm{~s}$
- Weak decay $\Sigma^{-} \rightarrow n \pi^{-}, \mathrm{BR}=99.85 \%$
(3) Σ^{0} baryon (uds), $m=1.193 \mathrm{GeV}, \tau=7.4 \times 10^{-20} \mathrm{~s}$
- EM decay $\Sigma^{0} \rightarrow \Lambda^{0} \gamma, B R \simeq 100 \%$
(2) $\Delta^{0}(1232)$ baryon $(u d d), m=1.232 \mathrm{GeV}, \Gamma=117 \mathrm{MeV}$
- Strong decay $\Delta^{0} \rightarrow n \pi^{0} / p \pi^{-}, \mathrm{BR}=99.4 \%$

Coordinate System in the Laboratory Frame

- The 3-momentum of a particle, \mathbf{p}, can be decomposed into a component p_{L}, which is parallel to the beam line and a transverse component p_{T}
- The \mathbf{p} direction can be describe by a polar angle $\theta \in[0, \pi]$ and an azimuth angle $\phi \in[0,2 \pi)$

- The pseudorapidity $\eta \in(-\infty, \infty)$ is commonly used instead of θ

$$
\eta \equiv-\ln \left(\tan \frac{\theta}{2}\right), \quad \theta=2 \tan ^{-1} e^{-\eta}, \quad-\eta=-\ln \left(\tan \frac{\pi-\theta}{2}\right)
$$

η	0	0.5	1	1.5	2	2.5	3	4	5	10
θ	90°	62.5°	40.4°	25.2°	15.4°	9.4°	5.7°	2.1°	0.77°	0.005°

- The 4-momentum of an on-shell particle can be described by $\left\{m, p_{\mathrm{T}}, \eta, \phi\right\}$
- Particles with higher p_{T} are more likely related to hard scattering, so p_{T}, rather than the energy E, is generally used for sorting particles or jets

Particle Stability

Mean decay length of a relativistic unstable particle:

$$
d=\beta \gamma \tau \simeq \gamma\left(\frac{\tau}{10^{-12} \mathrm{~s}}\right) 300 \mu \mathrm{~m}, \quad \gamma=\frac{E}{m}=\frac{1}{\sqrt{1-\beta^{2}}}
$$

- Stable particles: $p, e^{ \pm}, \gamma, v_{e}, v_{\mu}, v_{\tau}$, dark matter particle
- Quasi-stable particles ($\tau \gtrsim 10^{-10}$ s): $\mu^{ \pm}, \pi^{ \pm}, K^{ \pm}, n, \Lambda^{0}, K_{\mathrm{L}}^{0}$, etc. These particles may travel into outer layer detectors
- Particles with $\tau \simeq 10^{-13}-10^{-10}$ s: $\tau^{ \pm}, K_{\mathrm{S}}^{0}, D^{0}, D^{ \pm}, B^{0}, B^{ \pm}$, etc. These particles may travel a distinguishable distance ($\gtrsim 100 \mu \mathrm{~m}$) before decaying, resulting in a displaced secondary vertex
- Short-lived resonances ($\tau \lesssim 10^{-13} \mathrm{~s}$): $W^{ \pm}, Z^{0}, t, H^{0}, \pi^{0}, \rho^{0}, \rho^{ \pm}$, etc. These particles will decay instantaneously and can only be reconstructed from their decay products

Particle Detectors at Colliders

	γ	$e^{ \pm}$	$\mu^{ \pm}$	Charged hadrons	Neutral hadrons	v, DM
Tracker, $\|\eta\| \lesssim 2.5$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	\times
ECAL, $\|\eta\| \lesssim 3$			$\sqrt{ }$	$\sqrt{ }$	\times	\times
HCAL, $\|\eta\| \lesssim 5$	\times	\times	\times		\times	\times
Muon detectors, $\|\eta\| \lesssim 2.4$	\times	\times	$\sqrt{ }$	\times	\times	\times

Particle Detectors at Colliders

	γ	$e^{ \pm}$	$\mu^{ \pm}$	Charged hadrons	Neutral hadrons	v, DM
Tracker，$\|\eta\| \lesssim 2.5$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		
ECAL，$\|\eta\| \lesssim 3$	嘡	啉	$\sqrt{ }$	$\sqrt{ }$		
HCAL，$\|\eta\| \lesssim 5$	\times	\times	\times	参		
Muon detectors，$\|\eta\| \lesssim 2.4$	\times	\times	$\sqrt{ }$	\times		

A Candidate Event for $H^{0} \rightarrow Z Z^{*} \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-}$

A Dijet Event

Partons and Jets

A jet is a collimated bunch of particles (mainly hadrons) flying roughly in the same direction, probably originated from a parton produced in hard scattering

Jet \mid Def ${ }^{n}$

NLO partons
Jet \mid Def ${ }^{n}$

parton shower
Jet \mid Def ${ }^{n}$

[From M. Cacciari's talk (2013)]

Jet Clustering Algorithms

An observable is infrared and collinear (IRC) safe if it remains unchanged in the limit of a collinear splitting or an infinitely soft emission

- Cone algorithms: find coarse regions of energy flow Combine particles i and j when $\Delta R_{i j}=\sqrt{\left(\eta_{i}-\eta_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}}<R$, and find stable cones with a radius R
- Cone algorithms with seeds: find only some of the stable cones; IRC unsafe
- SISCone algorithm: seedless; find all stable cones; IRC safe
- Sequential recombination algorithms: starting from closest particles

Distance $d_{i j}=\min \left(k_{\mathrm{T}, i}^{2 p}, k_{\mathrm{T}, j}^{2 p}\right)\left(\frac{\Delta R_{i j}}{R}\right)^{2}$ for transverse momenta $k_{\mathrm{T}, i}$ and $k_{\mathrm{T}, j}$

- k_{T} algorithm: $p=1$; starting from soft particles; IRC safe
- Cambridge-Aachen algorithm: $p=0$; starting from close directions; IRC safe
- Anti- k_{T} algorithm: $p=-1$; starting from hard particles; IRC safe

[Cacciari, Salam, Soyez, arXiv:0802.1189, JHEP]

b-jets and τ-jets

Jets originated from b quarks and tau leptons can be distinguished from jets originated from light quarks and gluons via tagging techniques using various discriminating variables

- b-jets: tagging efficiency $\sim 70 \%$
- B mesons (e.g., $B^{0}, B^{ \pm}$) result in displaced vertices
- Numbers of soft electrons and soft muons are more than other jets
- τ-jets from hadronically decaying taus
- 1-prong modes $(B R=50 \%)$: 1 charged meson in the decay products, medium tagging efficiency $\sim 60 \%$
- 3-prong modes $(\mathrm{BR}=15 \%)$:

3 charged mesons in the decay products, medium tagging efficiency $\sim 40 \%$

[ATLAS coll., CONF-2014-004]

[ATLAS coll., arXiv:1412.7086, EPJC]

Monte Carlo Simulation

Monte Carlo Simulation

Partical physics model
FeynRules

Final state radiation Hard scattering

Monte Carlo Simulation

Monte Carlo Simulation

Monte Carlo Simulation

ME-PS Matching

- Matrix element: fixed order calculation for hard scattering diagrams Valid when partons are hard and well separated
- Parton shower: process-independent calculation based on QCD Valid when partons are soft and/or collinear
- ME-PS Matching: avoids double counting to yield correct distributions

Kinematic Variables

Although the same final states may come from various processes, we can use many kinematic variables, each of which catches a particular feature, to discriminate among different processes in data analyses
(1) Invariant mass $m_{\text {inv }} \equiv \sqrt{\left(p_{1}+p_{2}+\cdots+p_{i}\right)^{2}}$
$m_{\text {inv }}$ is commonly used to reconstruct the mass of an unstable particle from its decay products
(2) Recoil mass $m_{\text {rec }}$ at $e^{+} e^{-}$colliders

For a process $e^{+}+e^{-} \rightarrow 1+2+\cdots+n$, the recoil mass of Particle 1 is constructed by $m_{1, \text { rec }} \equiv \sqrt{\left[p_{e^{+}}+p_{e^{-}}-\left(p_{2}+\cdots+p_{n}\right)\right]^{2}}$

* For mass measurement of a particle at $e^{+} e^{-}$colliders, we can utilize not only its decay products, but also the associated produced particles
(0) Missing transverse energy $\mathbb{\not}_{\mathrm{T}} \equiv\left|\boldsymbol{p}_{\mathrm{T}}\right|, \quad \not \boldsymbol{p}_{\mathrm{T}} \equiv-\sum_{i} \mathbf{p}_{\mathrm{T}}^{i}$
\mathbb{E}_{T} is genuinely induced by neutrinos or DM particles, but may also be a result of imperfect detection of visible particles
(1) Scalar sum of p_{T} of all jets $H_{\mathrm{T}} \equiv \sum_{i} p_{\mathrm{T}}^{j_{i}}$ H_{T} characterizes the energy scale of jets from hard scattering
(0) Effective mass $m_{\text {eff }} \equiv \mathbb{E}_{\mathrm{T}}+H_{\mathrm{T}}$
$m_{\text {eff }}$ characterizes the energy scale of hard scattering processes that involve both jets and genuine \mathbb{E}_{T} sources, e.g., supersymmetric particle production
(0) Transverse mass m_{T} for semi-invisible decays
* For a 2-body decay process $P \rightarrow v+i$ with a visible product v and an invisible product i (e.g., $W \rightarrow \ell v_{\ell}$ and $\tilde{\chi}_{1}^{ \pm} \rightarrow \pi^{ \pm} \tilde{\chi}_{1}^{0}$), define

$$
m_{\mathrm{T}} \equiv \sqrt{m_{v}^{2}+m_{i}^{2}+2\left(E_{\mathrm{T}}^{\nu} E_{\mathrm{T}}^{i}-\mathbf{p}_{\mathrm{T}}^{v} \cdot \mathbf{p}_{\mathrm{T}}^{i}\right)} \text { with } \quad E_{\mathrm{T}}^{v, i} \equiv \sqrt{m_{v, i}^{2}+\left|\mathbf{p}_{\mathrm{T}}^{v, i}\right|^{2}}
$$

and $\mathbf{p}_{\mathrm{T}}^{i}={ }_{\mathrm{T}}$, and thus m_{T} will be bounded by $m_{P}: m_{\mathrm{T}} \leq m_{P}$
(In practice, m_{v} is often small, while m_{i} is usually either zero or unknown; thus a commonly used m_{T} definition is $m_{\mathrm{T}}=\sqrt{2\left(p_{\mathrm{T}}^{v} \boldsymbol{E}_{\mathrm{T}}-\mathbf{p}_{\mathrm{T}}^{v} \cdot \mathbf{p}_{\mathrm{T}}\right)}$
4. For a 3-body decay process with only one invisible particle, the transverse momenta of the two visible particles should be firstly combined, and then m_{T} will be well-defined
(0 "Stransverse mass" $m_{\mathrm{T} 2}$ for double semi-invisible decays 4. For decays of a particle-antiparticle pair $P \bar{P} \rightarrow v_{1} v_{2} i \bar{i}$ with two visible products v_{1} and v_{2} and two invisible products i_{1} and i_{2}, define

$$
m_{\mathrm{T} 2}\left(\mu_{i}\right)=\min _{\mathbf{p}_{\mathrm{T}}^{1}+\mathbf{p}_{\mathrm{T}}^{2}=\boldsymbol{p}_{\mathrm{T}}}\left\{\max \left[m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}}^{v_{1}}, \mathbf{p}_{\mathrm{T}}^{1} ; m_{v_{1}}, \mu_{i}\right), m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}}^{\nu_{2}}, \mathbf{p}_{\mathrm{T}}^{2} ; m_{v_{2}}, \mu_{i}\right)\right]\right\},
$$

where μ_{i} is a trial mass for i and can be set to 0 under some circumstances ($m_{\mathrm{T} 2}$ is the minimization of the larger m_{T} over all possible partitions * If μ_{i} is equal to the true mass of $i, m_{\mathrm{T} 2}$ will be bounded by $m_{P}: m_{\mathrm{T} 2} \leq m_{P}$

[ATLAS coll., CONF-2012-082]

Homework

(1) Draw one or two more Feynman diagrams for decay modes of every hadron listed in Pages 15-19
(2) Show that the $\pi^{+} \pi^{-}$and $\pi^{0} \pi^{0}$ systems have $C P=+$, and explain how the CP conservation affects the lifetimes of the K_{S}^{0} and K_{L}^{0} mesons, as mentioned in Page 15
(3) Explain how the OZI rule significantly reduces the widths of the J / Ψ and Υ mesons, whose decay modes listed in Page 18
(9) Proof that the pseudorapidity η defined in Page 20 is the relativistic limit of the rapidity $y \equiv \tanh ^{-1}\left(p_{\mathrm{L}} / E\right)$
(0) Express every component of the 4-momentum of an on-shell particle, $p^{\mu}=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)$, as a function of $\left\{m, p_{\mathrm{T}}, \eta, \phi\right\}$ defined in Page 20
(0) Proof the statement $m_{\mathrm{T}} \leq m_{P}$ in Page 32

