Lecture 1: Introduction to Dark Matter Direct Detection

Zhao-Huan Yu（余钊焕）

ARC Centre of Excellence for Particle Physics at the Terascale,
School of Physics, the University of Melbourne

http://yzhxxzxy.github.io

Frontiers in Dark Matter, Neutrinos, and Particle Physics
Theoretical Physics Summer School

Sun Yat-Sen University, Guangzhou
July 27-28, 2017
Dark Matter in the Universe

Dark matter (DM) makes up most of the matter component in the Universe, as suggested by astrophysical and cosmological observations.

Cold DM (25.8%)
$$\Omega_c h^2 = 0.1186 \pm 0.0020$$

Baryons (4.8%)
$$\Omega_b h^2 = 0.02226 \pm 0.00023$$

Dark energy (69.3%)
$$\Omega_\Lambda = 0.692 \pm 0.012$$
DM Relic Abundance

If DM particles (χ) were thermally produced in the early Universe, their **relic abundance** would be determined by the annihilation cross section $\langle \sigma_{\text{ann}} \nu \rangle$:

$$\Omega_\chi h^2 \sim \frac{3 \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}}{\langle \sigma_{\text{ann}} \nu \rangle}$$

Observation value $\Omega_\chi h^2 \approx 0.1$

$$\Rightarrow \quad \langle \sigma_{\text{ann}} \nu \rangle \approx 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$$

Assuming the annihilation process consists of two weak interaction vertices with the SU(2)$_L$ gauge coupling $g \approx 0.64$, for $m_\chi \sim \mathcal{O}(\text{TeV})$ we have

$$\langle \sigma_{\text{ann}} \nu \rangle \sim \frac{g^4}{16\pi^2 m_\chi^2} \sim \mathcal{O}(10^{-26}) \text{ cm}^3 \text{ s}^{-1}$$

$$\Rightarrow \quad \text{A very attractive class of DM candidates:}$$

Weakly interacting massive particles (WIMPs)
Experimental Approaches to WIMP Dark Matter

- Direct detection
- Indirect detection
- Collider detection

Unknown physics

DM

SM

Zhao-Huan Yu (Melbourne)

Dark Matter Direct Detection
WIMP Scattering off Atomic Nuclei

WIMPs and Neutrons scatter from the Atomic Nucleus

Photons and Electrons scatter from the Atomic Electrons
Direct Detection

- Scatterings on nuclei

→ detection of nuclear recoil energy

Ionization: Ge, Si
Bolometer: TeO₂, Ge, CaWO₄, ...
Scintillation: NaI(Tl), LXe, CaF₂(Eu), ...

WIMP
From galactic halo
(v~250 km/s)

Nucleus
in laboratory
(v=0 km/s)

Elastic WIMP
scattering

Nucleus

WIMP

θ_{Recoil}

E(recoil)~20 keV

[Bing-Lin Young, Front. Phys. 12, 121201 (2017)]
WIMP Velocity Distribution

During the collapse process which formed the Galaxy, WIMP velocities were “thermalized” by fluctuations in the gravitational potential, and WIMPs have a Maxwell-Boltzmann velocity distribution in the Galactic rest frame:

\[
\tilde{f}(\tilde{v})d^3\tilde{v} = \left(\frac{m_\chi}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{m_\chi \tilde{v}^2}{2k_B T}\right) d^3\tilde{v} = \frac{e^{-\tilde{v}^2/v_0^2}}{\pi^{3/2}v_0^3} d^3\tilde{v}, \quad v_0^2 \equiv \frac{2k_B T}{m_\chi}
\]

\[
\langle \tilde{v} \rangle = \int \tilde{v} \tilde{f}(\tilde{v})d^3\tilde{v} = 0, \quad \langle \tilde{v}^2 \rangle = \int \tilde{v}^2 \tilde{f}(\tilde{v})d^3\tilde{v} = \frac{3}{2}v_0^2
\]

Speed distribution: \(\tilde{f}(\tilde{v})d\tilde{v} = \frac{4\tilde{v}^2}{\sqrt{\pi}v_0^3}e^{-\tilde{v}^2/v_0^2}d\tilde{v} \)

For an isothermal halo, the local value of \(v_0 \) equals to the rotational speed of the Sun:

\(v_0 = v_\odot \approx 220 \text{km/s} \)

[Binney & Tremaine, *Galactic Dynamics*, Chapter 4]

Velocity dispersion: \(\sqrt{\langle \tilde{v}^2 \rangle} = \sqrt{3/2}v_0 \approx 270 \text{km/s} \)

[Credit: ESO/L. Calçada]
Earth Rest Frame

The WIMP velocity distribution \(f(v) \) seen by an observer on the Earth can be derived via **Galilean transformation**

\[
\tilde{v} = v + v_{\text{obs}}, \quad v_{\text{obs}} = v_\odot + v_\oplus
\]

Velocity distribution: \(f(v) = \tilde{f}(v + v_{\text{obs}}) \)

Speed distribution:

\[
f(v)dv = \frac{4v^2}{\sqrt{\pi}v_0^3} \exp\left(-\frac{v^2 + v_{\text{obs}}^2}{v_0^2}\right) \\
\times \frac{\tilde{v}_0^2}{2v v_{\text{obs}}} \sinh\left(\frac{2v v_{\text{obs}}}{v_0^2}\right) dv
\]

Since \(v_\oplus \ll v_\odot \), we have \((\omega = 2\pi/\text{year}) \)

\[
v_{\text{obs}}(t) \approx v_\odot + v_\oplus \sin \delta \cos[\omega(t - t_0)] \\
\approx 220 \text{ km/s} + 15 \text{ km/s} \cdot \cos[\omega(t - t_0)]
\]

⇒ **Annual modulation signal peaked on June 2** [Freese et al., PRD 37, 3388 (1988)]
Nuclear Recoil

Energy conservation:
\[
\frac{1}{2} m_\chi v^2 = \frac{1}{2} m_\chi v_\chi^2 + \frac{1}{2} m_A v_R^2
\]

Momentum conservation:
\[
m_\chi v = m_\chi v_\chi \cos \theta_\chi + m_A v_R \cos \theta_R
\]

\[
m_\chi v_\chi \sin \theta_\chi = m_A v_R \sin \theta_R
\]

⇒ **Recoil velocity**
\[
v_R = \frac{2m_\chi v \cos \theta_R}{m_\chi + m_A}
\]

⇒ **Recoil momentum** (momentum transfer)
\[
q_R = m_A v_R = 2\mu_{\chi A} v \cos \theta_R
\]

Reduced mass of the \(\chi A\) system
\[
\mu_{\chi A} = \frac{m_\chi m_A}{m_\chi + m_A} = \begin{cases}
 m_A, & \text{for } m_\chi \gg m_A \\
 \frac{1}{2} m_\chi, & \text{for } m_\chi = m_A \\
 m_\chi, & \text{for } m_\chi \ll m_A
\end{cases}
\]

Forward scattering \((\theta_R = 0)\) ⇒ maximal momentum transfer
\[
q_R^{\text{max}} = 2\mu_{\chi A} v
\]
Nuclear Recoil

Energy conservation:
\[\frac{1}{2} m_\chi v^2 = \frac{1}{2} m_\chi v_\chi^2 + \frac{1}{2} m_A v_R^2 \]

Momentum conservation:
\[m_\chi v = m_\chi v_\chi \cos \theta_\chi + m_A v_R \cos \theta_R \]
\[m_\chi v_\chi \sin \theta_\chi = m_A v_R \sin \theta_R \]

\[\Rightarrow \text{Recoil velocity } v_R = \frac{2 m_\chi v \cos \theta_R}{m_\chi + m_A} \]

\[\Rightarrow \text{Recoil momentum (momentum transfer) } q_R = m_A v_R = 2 \mu_\chi A v \cos \theta_R \]

\[\Rightarrow \text{Kinetic energy of the recoiled nucleus } E_R = \frac{q_R^2}{2 m_A} = \frac{2 \mu_\chi^2 A^2 v^2 \cos^2 \theta_R}{m_A} \]

As \(v \sim 10^{-3} c \), for \(m_\chi = m_A \simeq 100 \text{ GeV} \) and \(\theta_R = 0 \),
\[q_R = m_\chi v \sim 100 \text{ MeV}, \quad E_R = \frac{1}{2} m_\chi v^2 \sim 50 \text{ keV} \]
Event Rate

Event rate per unit time per unit energy interval:

\[
\frac{dR}{dE_R} = N_A \frac{\rho_\oplus}{m_\chi} \int_{v_{\text{min}}}^{v_{\text{max}}} d^3v \ f(v) \nu \frac{d\sigma_{\chi A}}{dE_R}
\]

- **Astrophysics factors**
- **Particle physics factors**
- **Detector factors**

\(N_A\): target nucleus number

\(\rho_\oplus \simeq 0.4\ \text{GeV/cm}^3\): DM mass density around the Earth

\(\rho_\oplus/m_\chi\) is the DM particle **number density** around the Earth

\(\sigma_{\chi A}\): DM-nucleus **scattering cross section**

Minimal velocity \(v_{\text{min}} = \left(\frac{m_A E_R^{\text{th}}}{2\mu_{\chi A}^2}\right)^{1/2}\): determined by the detector threshold of nuclear recoil energy, \(E_R^{\text{th}}\)

Maximal velocity \(v_{\text{max}}\): determined by the DM escape velocity \(v_{\text{esc}}\)

\(v_{\text{esc}} \simeq 544\ \text{km/s}\) [Smith *et al.*, MNRAS 379, 755]
Cross Section Dependence on Nucleus Spin

There are two kinds of DM-nucleus scattering

Spin-independent (SI) cross section: \(\sigma_{\chi A}^{\text{SI}} \propto \mu_{\chi A}^2 \left[Z G_p + (A-Z)G_n \right]^2 \)

Spin-dependent (SD) cross section: \(\sigma_{\chi A}^{\text{SD}} \propto \mu_{\chi A}^2 \frac{J_A+1}{J_A} \left(S_A^p G'_p + S_n^A G'_n \right)^2 \)

Nucleus properties: **mass number** \(A \), **atomic number** \(Z \), **spin** \(J_A \), expectation value of the **proton (neutron) spin content** in the nucleus \(S_A^p \) (\(S_n^A \))

\(G_p^{(i)} \) and \(G_n^{(i)} \): **DM effective couplings** to the proton and the neutron

- \(Z \approx A/2 \Rightarrow \sigma_{\chi A}^{\text{SI}} \propto A^2 \left[(G_p + G_n)/2 \right]^2 \)
 - Strong **coherent enhancement** for heavy nuclei
- Spins of nucleons tend to **cancel out** among themselves:
 - \(S_N^A \approx 1/2 \) \((N = p \text{ or } n)\) for a nucleus with an **odd** number of \(N \)
 - \(S_N^A \approx 0 \) for a nucleus with an **even** number of \(N \)
Three Levels of Interaction

- **DM-parton interaction**
 \[
 \mathcal{M}(\chi q \rightarrow \chi q)
 \]

- **DM-nucleon interaction**
 \[
 \mathcal{M}(\chi N \rightarrow \chi N)
 \]

- **DM-nucleus interaction**
 \[
 \mathcal{M}(\chi A \rightarrow \chi A)
 \]

- As a variety of target nuclei are used in direct detection experiments, results are usually compared with each other at the **DM-nucleon level**.

- The DM-nucleon level is related to the DM-parton level via **form factors**, which describe the probabilities of finding partons inside nucleons.

- Relevant partons involve not only valence quarks, but also **sea quarks and gluons**.
Technologies and Detector Material

[From M. Lindner’s talk (2016)]
Detection methods: Crystals (NaI, Ge, Si), Cryogenic Detectors, Liquid Noble Gases

CoGeNT, CDEX, Texono, Malbek, DAMIC

XENON, LUX/LZ, ArDM, PandaX, Darkside, DARWIN

SuperCDMS EDELWEISS

Ionization

Heat

Light

DEAP3600, CLEAN, DAMA, KIMS, XMASS, DM-Ice, ANAIS, SABRE

CRESST

CRESST-I

CUORE

Tracking: DRIFT, DMTPC MIMAC, NEWAGE

Superheated Liquids: COUPP, PICO, PICASSO, SIMPLE

[From M. Lindner’s talk (2016)]
Example: Dual-phase Xenon Time Projection Chamber

Upper: Xenon gas
Lower: Liquid Xenon

UV scintillation photons recorded by photomultiplier tube (PMT) arrays on top and bottom

- **Primary scintillation (S1):**
 Scintillation light promptly emitted from the interaction vertex

- **Secondary scintillation (S2):**
 Ionization electrons emitted from the interaction are drifted to the surface and into the gas, where they emit proportional scintillation light

Experiments: XENON, LUX, PandaX

[From A. Cottle’s talk (2017)]
PandaX-II Real Data: S1 versus S2

- S1 and S2: characterized by numbers of photoelectrons (PEs) in PMTs
- The γ background, which produces electron recoil (ER) events, can be distinguished from nuclear recoil (NR) events using the S2-to-S1 ratio

![Graph showing S1 and S2 data with ER and NR calibration medians and 99.99% NR acceptance]
Backgrounds

Background suppression:
- **Deep** underground
- ** Shielded** environments

- **Cosmogenic backgrounds:**
 - Cosmic rays and secondary reactions
 - Activation products in shields and detectors

- **Radiogenic backgrounds:**
 - External natural radioactivity: walls, structures of site, radon
 - Internal radioactivity: shield and construction materials, detector contamination in manufacture, naturally occurring radio-isotopes in target material

[From P. Cushman’s talk (2014)]
Experiments: CDEX, PandaX
Exclusion Limits for SI Scattering

For **SI scattering**, the **coherent enhancement** allows us to treat protons and neutrons as the same species, "**nucleons**"
Exclusion Limits for SI Scattering

For SI scattering, the coherent enhancement allows us to treat protons and neutrons as the same species, "nucleons"
For **SD scattering**, specific detection material usually has **very different** sensitivities to WIMP-proton and WIMP-neutron cross sections.

As there is no coherent enhancement for SD scattering, the sensitivity is **lower** than the SI case by **several orders of magnitude**.
DAMA/LIBRA Annual Modulation “Signal”

- Highly radio-pure scintillating NaI(Tl) crystals at Gran Sasso, Italy
- **Annual modulation signal** observed over 14 cycles at \(9.3\sigma \) significance
- No background/signal discrimination

![Graph showing annual modulation signal](image)

[DAMA/LIBRA ≈ 250 kg (1.04 ton×yr)]

[Bernabei et al., arXiv:1308.5109, EPJC]
DAMA/LIBRA Annual Modulation “Signal”

- Highly radio-pure scintillating NaI(Tl) crystals at Gran Sasso, Italy
- **Annual modulation signal** observed over 14 cycles at **9.3σ significance**
- No background/signal discrimination

![Graph showing WIMP-Nucleon Cross Section vs WIMP Mass](image)

[XENON100 coll., arXiv:1207.5988, PRL]

- Favored regions excluded by other direct detection experiments
Other Sources for DAMA/LIBRA Signal

The DAMA/LIBRA signal might be composed of neutrons liberated in the material surrounding the detector by two sources [Davis, arXiv:1407.1052, PRL]

- **Atmospheric muons:** flux depends on the **temperature of the atmosphere**, peaked on **June 21st**

- **Solar neutrinos:** flux depends on the **distance between the Earth and the Sun**, peaked on **January 4th**

![Amplitudes of the neutrino and muon components](image)

Objection: Klinger & Kudryavtsev, “muon-induced neutrons do not explain the DAMA data,” arXiv:1503.07225, PRL
Further Test: SABRE Project

SABRE: Sodium iodide with Active Background REjection

- Complementary tests in **both hemispheres**: one part in Gran Sasso (Italy) and one part in Stawell (Australia)
- Developing **low background** scintillating NaI(Tl) crystals that exceed the radio-purity of DAMA/LIBRA
- A well-shielded **active veto** to reduce internal and external backgrounds

\begin{itemize}
 \item $^{40}\text{K} \rightarrow ^{40}\text{Ar}$, $\sim 11\%$ branch ratio
 \item 3 keV K shell X-ray, Auger e^-
 \item Background at ~ 3 keV if γ escapes ^{40}K background can be rejected.
\end{itemize}

[From E. Barberio’s talk]
Low Mass Situation

[From J. Billard’s talk (2016)]
Near Future Prospect

[From A. Cottle’s talk (2017)]
Neutrino Backgrounds

Direct detection experiments will be sensitive to **coherent neutrino-nucleus scattering (CNS)** due to astrophysical neutrinos [Billard et al., arXiv:1307.5458, PRD]

- **Solar neutrinos**
 - *pp* neutrinos:
 \[p + p \rightarrow D + e^+ + \nu_e \]
 - *7Be* neutrinos:
 \[e^- + 7\text{Be} \rightarrow 7\text{Li} + \nu_e \]
 - *pep* neutrinos:
 \[p + e^- + p \rightarrow D + \nu_e \]
 - *8B* neutrinos:
 \[8\text{B} \rightarrow 8\text{Be}^* + e^+ + \nu_e \]
 - *Hep* neutrinos:
 \[^3\text{He} + p \rightarrow ^4\text{He} + e^+ + \nu_e \]

- **Atmospheric neutrinos**
 Cosmic-ray collisions in the atmosphere

- **Diffuse supernova neutrino background (DSNB)**
 All supernova explosions in the past history of the Universe
Going beyond the Neutrino Floor

Possible ways to reduce the impact of neutrino backgrounds:

- Reduction of **systematic uncertainties** on neutrino fluxes
- Utilization of **different target nuclei** [Ruppin et al., arXiv:1408.3581, PRD]
- Measurement of **annual modulation** [Davis, arXiv:1412.1475, JCAP]
Zero Momentum Transfer Limit

- As the momentum transfer (q_R in the nucleus rest frame) is typically much smaller than the underlying energy scale (e.g., mediator mass), the **zero momentum transfer limit** is a good approximation for calculation.

- In this limit, the mediator field can be integrated out, and the interaction can be described by **effective operators** in **effective field theory**.

Scalar mediator propagator:

$$\frac{i}{q^2 - m_S^2} \implies -\frac{i}{m_S^2}$$

Lagrangian:

$$\mathcal{L}_{\text{int}} = g_\chi S \bar{\chi} \chi + g_q S \bar{q} q \implies \mathcal{L}_{\text{eff}} = G_{\text{eff}} \bar{\chi} \chi \bar{q} q, \quad G_{\text{eff}} = \frac{g_\chi g_q}{m_S^2}$$
Effective Operators for DM-nucleon interactions

Assuming the DM particle is a **Dirac fermion** χ and using **Dirac fields** p and n to describe the proton and the neutron, the effective Lagrangian reads

$$\mathcal{L}_{\text{eff},N} = \sum_{N=p,n} \sum_{i,j} G_{N,i,j} \bar{\chi} \Gamma^i \chi \bar{N} \Gamma^j N,$$

$$\Gamma^i, \Gamma^j \in \{1, i\gamma_5, \gamma^\mu, \gamma^\mu \gamma_5, \sigma^{\mu\nu}\}$$

- **Lorentz indices** in Γ^i and Γ^j should be contracted in pair
- Effective couplings $G_{N,i,j}$ have a mass dimension of -2: $[G_{N,i,j}] = [\text{Mass}]^{-2}$
- $\bar{\chi} \chi \bar{N} N$ and $\bar{\chi} \gamma^\mu \chi \bar{N} \gamma_5 N$ lead to **SI** DM-nucleon scattering
- $\bar{\chi} \gamma^\mu \gamma_5 \chi \bar{N} \gamma_5 N$ and $\bar{\chi} \sigma^{\mu\nu} \chi \bar{N} \sigma_{\mu\nu} N$ lead to **SD** DM-nucleon scattering
- The following operators lead to scattering cross sections $\sigma_{\chi N} \propto v^2$:
 - $\bar{\chi} i\gamma_5 \chi \bar{N} i\gamma_5 N$, $\bar{\chi} \chi \bar{N} i\gamma_5 N$, $\bar{\chi} i\gamma_5 \chi \bar{N} N$, $\bar{\chi} \gamma^\mu \chi \bar{N} \gamma_5 N$, $\bar{\chi} \gamma^\mu \gamma_5 \chi \bar{N} \gamma_5 N$
- For a **Majorana fermion** χ instead, we have $\bar{\chi} \gamma^\mu \chi = 0$ and $\bar{\chi} \sigma^{\mu\nu} \chi = 0$, and hence the related operators vanish
Higgs Portal for Majorana Fermionic DM

Interactions for a **Majorana fermion** χ, the **SM Higgs boson** h, and quarks q:

$$L_{\text{DM}} \supset \frac{1}{2} g_\chi h \bar{\chi} \chi$$

$$L_{\text{SM}} \supset - \sum_q \frac{m_q}{v} h \bar{q} q, \quad q = d, u, s, c, b, t$$

The amplitude for $\chi(p_1) + q(k_1) \rightarrow \chi(p_2) + q(k_2)$:

$$i \mathcal{M} = ig_\chi \bar{u}(p_2) u(p_1) \left(\frac{i}{q^2 - m_h^2} \right) \left(-i \frac{m_q}{v} \right) \bar{u}(k_2) u(k_1)$$

Zero momentum transfer \downarrow $q^2 = (k_2 - k_1)^2 \rightarrow 0$

$$i \mathcal{M} = -i \frac{g_\chi m_q}{v m_h^2} \bar{u}(p_2) u(p_1) \bar{u}(k_2) u(k_1)$$

$$\mathcal{L}_{\text{eff},q} = \sum_q G_{S,q} \bar{\chi} \chi \bar{q} q, \quad G_{S,q} = - \frac{g_\chi m_q}{2v m_h^2}$$
Effective Lagrangian: Scalar Type

Scalar-type effective Lagrangian for a spin-1/2 fermion \(\chi \):

\[
\mathcal{L}_{S,q} = \sum_q G_{S,q} \bar{\chi} \chi \bar{q} q \quad \Rightarrow \quad \mathcal{L}_{S,N} = \sum_{N=p,n} G_{S,N} \bar{\chi} \chi \bar{N} N
\]

\[
G_{S,N} = m_N \left(\sum_{q=u,d,s} \frac{G_{S,q}}{m_q} f_q^N + \sum_{q=c,b,t} \frac{G_{S,q}}{m_q} f_Q^N \right)
\]

The second term accounts for DM interactions with gluons through loops of heavy quarks (c, b, and t):

\[
f_Q^N = \frac{2}{27} \left(1 - \sum_{q=u,d,s} f_q^N \right)
\]

Form factor \(f_q^N \) is the contribution of \(q \) to \(m_N \):

\[
\langle N | m_q \tilde{q} q | N \rangle = f_q^N m_N
\]

\[
f_u^p \simeq 0.020, \quad f_d^p \simeq 0.026, \quad f_u^n \simeq 0.014, \quad f_d^n \simeq 0.036, \quad f_s = f_s^n \simeq 0.118
\]

[Ellis et al., arXiv:hep-ph/0001005, PLB]

The scalar type induces **SI** DM-nucleon scattering with a cross section of

\[
\sigma_{\chi N}^{SI} = \frac{n_\chi}{\pi} \mu_{\chi N}^2 G_{S,N}^2, \quad \mu_{\chi N} \equiv \frac{m_\chi m_N}{m_\chi + m_N}, \quad n_\chi = \begin{cases} 1, & \text{for Dirac fermion } \chi \\ 4, & \text{for Majorana fermion } \chi \end{cases}
\]
Interactions for a Majorana fermion χ, the Z boson, and quarks q:

$$\mathcal{L}_{DM} \supset \frac{1}{2} g_{\chi} Z_{\mu} \bar{\chi} \gamma^{\mu} \gamma_{5} \chi, \quad \mathcal{L}_{SM} \supset \frac{g}{2c_{W}} Z_{\mu} \sum_{q} \bar{q} \gamma^{\mu} (g_{V} - g_{A} \gamma_{5}) q$$

$$g^{u_{i}}_{V} = \frac{1}{2} - \frac{4}{3} s_{W}^{2}, \quad g^{d_{i}}_{V} = -\frac{1}{2} + \frac{2}{3} s_{W}^{2}, \quad g^{u_{i}}_{A} = \frac{1}{2} = -g^{d_{i}}_{A}, \quad c_{W} \equiv \cos \theta_{W}, \quad s_{W} \equiv \sin \theta_{W}$$

Z boson propagator

$$\begin{align*}
\frac{-i}{q^{2} - m_{Z}^{2}} \left(g_{\mu}\nu - \frac{q_{\mu} q_{\nu}}{m_{Z}^{2}} \right) & \quad q^{2} \rightarrow 0 \\
\frac{i}{m_{Z}^{2}} g_{\mu}\nu
\end{align*}$$

Effective Lagrangian in the zero momentum transfer limit:

$$\mathcal{L}_{\text{eff},q} = \sum_{q} \bar{\chi} \gamma^{\mu} \gamma_{5} \chi (G_{A,q} \bar{q} \gamma_{\mu} \gamma_{5} q + G_{AV,q} \bar{q} \gamma_{\mu} q), \quad G_{A,q} = \frac{g_{\chi} g_{g} q}{4c_{W} m_{Z}^{2}}$$

$$G_{AV,q} = -\frac{g_{\chi} g_{g} q}{4c_{W} m_{Z}^{2}}$$

leads to $\sigma_{\chi N} \propto \nu^{2}$ and can be neglected for direct detection
Effective Lagrangian: Axial Vector Type

Axial-vector-type effective Lagrangian for a spin-\(1/2\) fermion \(\chi\):

\[
\mathcal{L}_{A,q} = \sum_q G_{A,q} \bar{\chi} \gamma^{\mu} \gamma_5 \chi \bar{q} \gamma_{\mu} \gamma_5 q \quad \Rightarrow \quad \mathcal{L}_{A,N} = \sum_{N=p,n} G_{A,N} \bar{\chi} \gamma^{\mu} \gamma_5 \chi \bar{N} \gamma_{\mu} \gamma_5 N
\]

\[
G_{A,N} = \sum_{q=u,d,s} G_{A,q} \Delta^N_q, \quad 2\Delta^N_q s_\mu \equiv \langle N | \bar{q} \gamma_{\mu} \gamma_5 q | N \rangle
\]

Form factors \(\Delta^N_q\) account the contributions of quarks and anti-quarks to the nucleon spin vector \(s_\mu\), and can be extracted from lepton-proton scattering data:

\[
\Delta^p_u = \Delta^n_d \simeq 0.842, \quad \Delta^p_d = \Delta^n_u \simeq -0.427, \quad \Delta^p_s = \Delta^n_s \simeq -0.085
\]

[HERMES coll., arXiv:hep-ex/0609039, PRD]

Neutron form factors are related to proton form factors by isospin symmetry

The axial vector type induces SD DM-nucleon scattering:

\[
\sigma_{\chi N}^{\text{SD}} = \frac{3n_\chi}{\pi} \mu_{\chi N}^2 G_{A,N}^2,
\]

\[
n_\chi = \begin{cases} 1, & \text{for Dirac fermion } \chi \\ 4, & \text{for Majorana fermion } \chi \end{cases}
\]
Z Portal for Complex Scalar DM

Interactions for a **complex scalar** χ, the Z **boson**, and quarks q:

$$\mathcal{L}_{DM} \supset g\chi Z_\mu (\chi^* i \partial^\mu \chi)$$

$$\mathcal{L}_{SM} \supset \frac{g}{2c_W} Z_\mu \sum_q \bar{q}\gamma^\mu (g_V^q - g_A^q \gamma_5)q$$

$$i\mathcal{M} = ig\chi (p_1 + p_2)^\mu \frac{-i(g_{\mu\nu} - q_\mu q_\nu / m_Z^2)}{q^2 - m_Z^2}$$

$$\times i \frac{g}{2c_W} \bar{u}(k_2)\gamma^\nu (g_V^q - g_A^q \gamma_5)u(k_1)$$

$$q^2 \to 0 \quad \frac{-i g\chi g}{2c_W m_Z^2} (p_1 + p_2)^\mu \bar{u}(k_2)\gamma_\mu (g_V^q - g_A^q \gamma_5)u(k_1)$$

$$\mathcal{L}_{\text{eff},q} = \sum_q (\chi^* i \partial^\mu \chi)(F_{V,q} \bar{q}\gamma_\mu q + F_{VA,q} \bar{q}\gamma_\mu \gamma_5 q)$$

$$F_{V,q} = -\frac{g\chi g g_V^q}{2c_W m_Z^2}, \quad F_{VA,q} = \frac{g\chi g g_A^q}{2c_W m_Z^2} (\Rightarrow \sigma \propto v^2)$$
Effective Lagrangian: Vector Type

Vector-type effective Lagrangian for a complex scalar χ:

$$\mathcal{L}_{V,q} = \sum_q F_{V,q} (\chi^* i \overleftarrow{\partial}^\mu \chi) \bar{q} \gamma_\mu q \quad \Rightarrow \quad \mathcal{L}_{A,N} = \sum_{N=p,n} F_{V,N} (\chi^* i \overleftarrow{\partial}^\mu \chi) \bar{N} \gamma_\mu N$$

The relation between $F_{V,N}$ and $F_{V,q}$ reflects the valence quark numbers in N:

$$F_{V,p} = 2F_{V,u} + F_{V,d}, \quad F_{V,n} = F_{V,u} + 2F_{V,d}$$

The vector type induces SI DM-nucleon scattering: $\sigma^{SI}_{\chi N} = \frac{1}{\pi} \mu^2 \chi_N F_{V,N}^2$

Vector-type effective Lagrangian for a Dirac fermion χ:

$$\mathcal{L}_{V,q} = \sum_q G_{V,q} \tilde{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q \quad \Rightarrow \quad \mathcal{L}_{A,N} = \sum_{N=p,n} G_{V,N} \tilde{\chi} \gamma^\mu \chi \bar{N} \gamma_\mu N$$

It also induces SI DM-nucleon scattering:

$$\sigma^{SI}_{\chi N} = \frac{1}{\pi} \mu^2 \chi_N G_{V,N}^2, \quad G_{V,p} = 2G_{V,u} + G_{V,d}, \quad G_{V,n} = G_{V,u} + 2G_{V,d}$$
Effective Operators for DM-quark Interactions

<table>
<thead>
<tr>
<th>SI</th>
<th>Spin-1/2 DM</th>
<th>Spin-0 DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\chi} \chi \bar{q} q$, $\bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$</td>
<td>$\chi^* \chi \bar{q} q$, $(\chi^* i \bar{\partial}^\mu \chi)(\bar{q} \gamma_\mu q)$</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>$\bar{\chi} \gamma^\mu \gamma_5 \bar{\chi} \gamma_\mu \gamma_5 q$, $\bar{\chi} \sigma^{\mu \nu} \chi \bar{q} \sigma_{\mu \nu} q$</td>
<td></td>
</tr>
<tr>
<td>$\sigma_{\chi N} \propto v^2$</td>
<td>$\bar{\chi} i \gamma_5 \bar{\chi} i \gamma_5 q$, $\bar{\chi} \chi \bar{q} i \gamma_5 q$</td>
<td>$\chi^* \chi \bar{q} i \gamma_5 q$</td>
</tr>
<tr>
<td></td>
<td>$\bar{\chi} i \gamma_5 \bar{\chi} q$, $\bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$</td>
<td>$(\chi^* i \bar{\partial}^\mu \chi)(\bar{q} \gamma_\mu \gamma_5 q)$</td>
</tr>
<tr>
<td></td>
<td>$\bar{\chi} \gamma^\mu \gamma_5 \bar{\chi} \gamma_\mu q$, $\epsilon^{\mu \nu \rho \sigma} \bar{\chi} \sigma^{\mu \nu} \chi \bar{q} \sigma_{\rho \sigma} q$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SI</th>
<th>Spin-3/2 DM</th>
<th>Spin-1 DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\chi} \mu \chi \mu \bar{q} q$, $\bar{\chi} \gamma^\mu \gamma_5 \chi \bar{q} \gamma_\mu q$</td>
<td>$\chi^* \chi \mu \bar{q} q$, $(\chi^* i \bar{\partial}^\mu \chi)(\bar{q} \gamma_\mu q)$</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>$\bar{\chi} \gamma^\mu \gamma_5 \chi \bar{q} \gamma_\mu q$, $\bar{\chi} \sigma^{\mu \nu} \chi \bar{q} \sigma_{\mu \nu} q$</td>
<td></td>
</tr>
<tr>
<td>$\sigma_{\chi N} \propto v^2$</td>
<td>$\bar{\chi} \mu i \gamma_5 \chi \mu \bar{q} i \gamma_5 q$, $\bar{\chi} \gamma^\mu \gamma_5 \chi \bar{q} \gamma_\mu q$</td>
<td>$\chi^* \chi \mu \bar{q} i \gamma_5 q$</td>
</tr>
<tr>
<td></td>
<td>$\bar{\chi} \mu i \gamma_5 \chi \mu \bar{q} q$, $\bar{\chi} \gamma^\mu \gamma_5 \chi \bar{q} \gamma_\mu q$</td>
<td>$(\chi^* i \bar{\partial}^\mu \chi)(\bar{q} \gamma_\mu \gamma_5 q)$</td>
</tr>
<tr>
<td></td>
<td>$\bar{\chi} \gamma^\mu \gamma_5 \chi \bar{q} \gamma_\mu q$, $\epsilon^{\mu \nu \rho \sigma} i(\bar{\chi} \mu \chi \gamma_\nu - \bar{\chi} \nu \chi \mu)(\bar{q} \sigma_{\rho \sigma} q)$</td>
<td>$\chi^* \chi^\mu \bar{q} i \gamma_5 q$</td>
</tr>
<tr>
<td></td>
<td>$\epsilon^{\mu \nu \rho \sigma} i(\bar{\chi} \mu \chi \gamma_\nu - \bar{\chi} \nu \chi \mu)(\bar{q} \sigma_{\rho \sigma} q)$</td>
<td>$(\chi^* i \bar{\partial}^\mu \chi)(\bar{q} \gamma_\sigma \gamma_5 q)$</td>
</tr>
<tr>
<td></td>
<td>$\epsilon^{\mu \nu \rho \sigma} \bar{\chi} \sigma^{\mu \nu} \chi \bar{q} \sigma_{\rho \sigma} q$</td>
<td>$\epsilon^{\mu \nu \rho \sigma} (\chi^*\mu \partial\nu \chi_\rho)(\bar{q} \gamma_\sigma \gamma_5 q)$</td>
</tr>
<tr>
<td></td>
<td>$\epsilon^{\mu \nu \rho \sigma} \bar{\chi} \sigma^{\mu \nu} \chi \bar{q} \sigma_{\rho \sigma} q$</td>
<td>$\epsilon^{\mu \nu \rho \sigma} (\chi^*\mu \partial\nu \chi_\rho)(\bar{q} \gamma_\sigma \gamma_5 q)$</td>
</tr>
</tbody>
</table>

Homework

1. Derive the speed distribution $f(v)$ in Page 8 from $f(v) = \tilde{f}(v + v_{\text{obs}})$

2. Calculate the normalization factor for the velocity distribution $\tilde{f}(\tilde{v})$ in Page 7 if the escape velocity v_{esc} is taken into account

3. Derive the recoil velocity v_R in Page 9 from the laws of energy and momentum conservation

4. Examine the conservation of electric charge, lepton number, and baryon number for the reactions producing solar neutrinos in Page 26

5. Evaluate the values of DM-nucleon effective couplings $G_{S,p}$ ($G_{A,p}$) and $G_{S,n}$ ($G_{A,n}$) for the Higgs-portal (Z-portal) model in Page 30 (32) using the values of form factors listed in Page 31 (33)

6. Proof the expressions for $\sigma_{\chi_N}^{SI}$ and $\sigma_{\chi_N}^{SD}$ shown in Pages 31, 33, and 35

7. Examine the hermiticity of the operators tabulated in Page 36