Experiments

Effective Lagrangians

Lecture 1: Introduction to Dark Matter Direct Detection

Zhao-Huan Yu (余钊焕)

ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, the University of Melbourne http://yzhxxzxy.github.io

Frontiers in Dark Matter, Neutrinos, and Particle Physics Theoretical Physics Summer School

Sun Yat-Sen University, Guangzhou July 27-28, 2017

Zhao-Huan Yu (Melbourne)

Dark Matter Direct Detection

July 2017 1 / 37

Dark Matter in the Universe

Dark matter (DM) makes up most of the matter component in the Universe, as suggested by astrophysical and cosmological observations

Zhao-Huan Yu (Melbourne)

Dark Matter Direct Detection

July 2017 2 / 37

Basics	
0000000000	

Experiments

Effective Lagrangians

DM Relic Abundance

If DM particles (χ) were thermally produced in the early Universe, their **relic abundance** would be determined by the annihilation cross section $\langle \sigma_{ann} \nu \rangle$:

$$\Omega_{\chi}h^2 \simeq \frac{3\times 10^{-27}~{\rm cm}^3{\rm s}^{-1}}{\langle\sigma_{\rm ann}\nu\rangle}$$

Observation value $\Omega_{\chi} h^2 \simeq 0.1$

$$\Rightarrow \quad \langle \sigma_{\rm ann} \nu \rangle \simeq 3 \times 10^{-26} \ {\rm cm}^3 {\rm s}^{-1}$$

Assuming the annihilation process consists of two weak interaction vertices with the SU(2)_L gauge coupling $g \simeq 0.64$, for $m_{\chi} \sim O(\text{TeV})$ we have

$$\langle \sigma_{\rm ann} \nu \rangle \sim \frac{g^4}{16\pi^2 m_{\chi}^2} \sim \mathcal{O}(10^{-26}) \ {\rm cm}^3 \, {\rm s}^{-1}$$

 \Rightarrow A very attractive class of DM candidates:

Weakly interacting massive particles (WIMPs)

Zhao-Huan Yu (Melbourne)

Experiments

Effective Lagrangian

Homework

WIMP Scattering off Atomic Nuclei

Zhao-Huan Yu (Melbourne)

[Bing-Lin Young, Front. Phys. 12, 121201 (2017)]

Zhao-Huan Yu (Melbourne)

Basics	Experiments	Effective Lagrangians	Homework
000000000	000000000000	00000000	0

WIMP Velocity Distribution

During the collapse process which formed the Galaxy, WIMP velocities were "thermalized" by fluctuations in the gravitational potential, and WIMPs have a **Maxwell-Boltzmann velocity distribution** in the **Galactic rest frame**:

$$\tilde{f}(\tilde{\mathbf{v}})d^{3}\tilde{v} = \left(\frac{m_{\chi}}{2\pi k_{\rm B}T}\right)^{3/2} \exp\left(-\frac{m_{\chi}\tilde{v}^{2}}{2k_{\rm B}T}\right)d^{3}\tilde{v} = \frac{e^{-\tilde{v}^{2}/v_{0}^{2}}}{\pi^{3/2}v_{0}^{3}}d^{3}\tilde{v}, \quad v_{0}^{2} \equiv \frac{2k_{\rm B}T}{m_{\chi}}$$
$$\langle \tilde{\mathbf{v}} \rangle = \int \tilde{\mathbf{v}}\tilde{f}(\tilde{\mathbf{v}})d^{3}\tilde{v} = \mathbf{0}, \quad \langle \tilde{v}^{2} \rangle = \int \tilde{v}^{2}\tilde{f}(\tilde{\mathbf{v}})d^{3}\tilde{v} = \frac{3}{2}v_{0}^{2}$$
Speed distribution: $\tilde{f}(\tilde{v})d\tilde{v} = \frac{4\tilde{v}^{2}}{\sqrt{\pi}v_{0}^{3}}e^{-\tilde{v}^{2}/v_{0}^{2}}d\tilde{v}$

For an **isothermal** halo, the local value of v_0 equals to the **rotational speed of the Sun**: $v_0 = v_{\odot} \simeq 220 \text{km/s}$

[Binney & Tremaine, Galactic Dynamics, Chapter 4]

Galactic disk and dark halo

[Credit: ESO/L. Calçada]

Velocity dispersion:
$$\sqrt{\langle \tilde{v}^2 \rangle} = \sqrt{3/2} v_0 \simeq 270 \text{km/s}$$

Zhao-Huan Yu (Melbourne)

Dark Matter Direct Detection

July 2017 7 / 37

Basics	Experiments	Effective Lagrangians	Homework
0000000000	0000000000000000	00000000	
Earth Rest Fr	ame		

The WIMP velocity distribution $f(\mathbf{v})$ seen by an observer on the Earth can be derived via **Galilean transformation**

$$\tilde{\mathbf{v}} = \mathbf{v} + \mathbf{v}_{obs}, \quad \mathbf{v}_{obs} = \mathbf{v}_{\odot} + \mathbf{v}_{\oplus}$$

Velocity distribution: $f(\mathbf{v}) = \tilde{f}(\mathbf{v} + \mathbf{v}_{obs})$ Speed distribution:

$$f(v)dv = \frac{4v^2}{\sqrt{\pi}v_0^3} \exp\left(-\frac{v^2 + v_{obs}^2}{v_0^2}\right)$$
$$\times \frac{\tilde{v}_0^2}{2vv_{obs}} \sinh\left(\frac{2vv_{obs}}{v_0^2}\right)dv$$

Since $v_{\oplus} \ll v_{\odot}$, we have $(\omega = 2\pi/\text{year})$

$$v_{obs}(t) \simeq v_{\odot} + v_{\oplus} \sin \delta \cos[\omega(t - t_0)]$$

$$\simeq 220 \text{ km/s} + 15 \text{ km/s} \cdot \cos[\omega(t - t_0)]$$

⇒ Annual modulation signal peaked on June 2 [Freese et al., PRD 37, 3388 (1988)]

Basics	Experiments	Effective Lagrangians	
Nuclear Recoil			
Energy conservation	1:		V~
$\frac{1}{2}m_{\chi}v^2 = \frac{1}{2}m_{\chi}v_{\chi}^2$	$+\frac{1}{2}m_A v_R^2$	D Nucleus	X
Momentum conserv	vation:	A A	
$m_{\chi}v = m_{\chi}v_{\chi}\cos\theta_{\chi}$	$+ m_A v_R \cos \theta_R$	\rightarrow^{ν}	
$m_{\chi}v_{\chi}\sin\theta_{\chi}=m_{\chi}$	$_{\rm A}v_{\rm R}\sin\theta_{\rm R}$	•	$\theta_{\rm R}$
\Rightarrow Recoil velocity $v_{\rm R}$	$=\frac{2m_{\chi}\nu\cos\theta_{\rm R}}{m_{\chi}+m_A}$		$A \sim v_{\rm R}$
\Rightarrow Recoil momentu	m (momentum tran	sfer) $\boldsymbol{q}_{\mathrm{R}} = m_A v_{\mathrm{R}} = 2$	$\mu_{\chi A} \nu \cos \theta_{ m R}$
Reduced mass of the	e χA system $\mu_{\chi A} \equiv \frac{1}{2}$	$\frac{m_{\chi}m_{A}}{m_{\chi}+m_{A}} = \begin{cases} m_{A}, \\ \frac{1}{2}m_{\chi}, \\ m_{\chi}, \end{cases}$	for $m_{\chi} \gg m_A$ for $m_{\chi} = m_A$ for $m_{\chi} \ll m_A$

Forward scattering $(\theta_{\rm R}=0)$ \Rightarrow maximal momentum transfer $q_{\rm R}^{\rm max}=2\mu_{\chi A} v$

Zhao-Huan Yu (Melbourne)

Dark Matter Direct Detection

July 2017 9 / 37

Basics 0000000●000	Experiments	Effective Lagrangians	
Nuclear Re	ecoil		
Energy con	servation:		ν
$\frac{1}{2}m_{\chi}v^2 =$	$=\frac{1}{2}m_{\chi}v_{\chi}^{2}+\frac{1}{2}m_{A}v_{R}^{2}$	ND Nucleus	X
Momentum	conservation:	A A	
$m_{\chi}\nu = m_{\chi}\nu$	$v_{\chi} \cos \theta_{\chi} + m_A v_R \cos \theta_R$	\rightarrow \sim \sim \sim	
$m_{\chi} v_{\chi}$ si	$\ln \theta_{\chi} = m_A v_{\rm R} \sin \theta_{\rm R}$		$\theta_{\rm R}$
\Rightarrow Recoil ve	elocity $v_{\rm R} = \frac{2m_{\chi}v\cos\theta_{\rm R}}{m_{\chi}+m_A}$	Ā	$\nu_{\rm R}$
\Rightarrow Recoil r	nomentum (momentum trar	nsfer) $q_{\rm R} = m_A v_{\rm R} = 2\mu_{\chi A} v \cos \theta$	$\theta_{ m R}$
\Rightarrow Kinetic	energy of the recoiled nucle	us $E_{\rm R} = \frac{q_{\rm R}^2}{2m_A} = \frac{2\mu_{\chi A}^2}{m_A} v^2 \cos^2\theta$	R
	As $v \sim 10^{-3}c$, for $m_{\chi} = m_{\chi}$	$_A \simeq 100 { m GeV}$ and $ heta_{ m R} = 0$,	
	$q_{ m R} = m_\chi \nu \sim 100$ MeV,	$E_{\rm R} = \frac{1}{2} m_\chi v^2 \sim 50 ~\rm keV$	

Zhao-Huan Yu (Melbourne)

Dark Matter Direct Detection

July 2017 9 / 37

Basics	Experiments	Effective Lagrangians	
0000000000	00000000000000	00000000	
Event Rate			

Event rate per unit time per unit energy interval:

$$\frac{dR}{dE_{\rm R}} = N_A \frac{\rho_{\oplus}}{m_{\chi}} \int_{\nu_{\rm min}}^{\nu_{\rm max}} d^3 \nu f(\mathbf{v}) \nu \frac{d\sigma_{\chi A}}{dE_{\rm R}}$$

Astrophysics factors Particle physics factors Detector factors

N_A: target nucleus number

 $\rho_{\oplus} \simeq 0.4 \text{ GeV/cm}^3$: DM mass density around the Earth $(\rho_{\oplus}/m_{\chi} \text{ is the DM particle number density around the Earth})$ $\sigma_{\chi A}$: DM-nucleus scattering cross section

Minimal velocity $v_{\min} = \left(\frac{m_A E_R^{\text{th}}}{2\mu_{\chi A}^2}\right)^{1/2}$: determined by the **detector threshold** of nuclear recoil energy, E_R^{th}

Maximal velocity v_{max} : determined by the DM escape velocity v_{esc}

 $\left(\nu_{esc}\simeq 544~\text{km/s}~\text{[Smith et al., MNRAS 379, 755]}\right)$

Zhao-Huan Yu (Melbourne)

There are two kinds of DM-nucleus scattering

Spin-independent (SI) cross section: $\sigma_{\chi A}^{\text{SI}} \propto \mu_{\chi A}^2 [ZG_p + (A - Z)G_n]^2$ **Spin-dependent (SD)** cross section: $\sigma_{\chi A}^{\text{SD}} \propto \mu_{\chi A}^2 \frac{J_A + 1}{J_A} (S_p^A G'_p + S_n^A G'_n)^2$

Nucleus properties: mass number A, atomic number Z, spin J_A , expectation value of the proton (neutron) spin content in the nucleus $S_p^A(S_n^A)$ $G_p^{(\prime)}$ and $G_n^{(\prime)}$: DM effective couplings to the proton and the neutron

- $Z \simeq A/2 \implies \sigma_{\chi A}^{SI} \propto A^2 [(G_p + G_n)/2]^2$ Strong **coherent enhancement** for **heavy** nuclei
- Spins of nucleons tend to **cancel out** among themselves:
 - $S_N^A \simeq 1/2$ (N = p or n) for a nucleus with an odd number of N
 - $S_N^A \simeq 0$ for a nucleus with an **even** number of N

Three Levels of Interaction

- As a variety of target nuclei are used in direct detection experiments, results are usually compared with each other at the DM-nucleon level
- The DM-nucleon level is related to the DM-parton level via form factors, which describe the probabilities of finding partons inside nucleons
- Relevant partons involve not only valence quarks, but also sea quarks and gluons

Zhao-Huan Yu (Melbourne)

Zhao-Huan Yu (Melbourne)

Dark Matter Direct Detection

July 2017 13 / 37

Zhao-Huan Yu (Melbourne)

Dark Matter Direct Detection

July 2017 14 / 37

Effective Lagrangians

Example: Dual-phase Xenon Time Projection Chamber

Upper: Xenon gas Lower: Liquid Xenon

UV scintillation photons recorded by photomultiplier tube (PMT) arrays on top and bottom

- **Primary scintillation (S1):** Scintillation light promptly emitted from the interaction vertex
- Secondary scintillation (S2): lonization electrons emitted from the interaction are drifted to the surface and into the gas, where they emit proportional scintillation light

Experiments: XENON, LUX, PandaX

[From A. Cottle's talk (2017)]

- S1 and S2: characterized by numbers of photoelectrons (PEs) in PMTs
- The γ background, which produces electron recoil (ER) events, can be distinguished from nuclear recoil (NR) events using the S2-to-S1 ratio

Basics	Experiments	Effective Lagrangians	
	000000000000		

Backgrounds

Background suppression: Deep underground Shielded environments

- Cosmogenic backgrounds:
 - Cosmic rays and secondary reactions
 - Activation products in shields and detectors
- Radiogenic backgrounds:
 - External natural radioactivity: walls, structures of site, radon
 - Internal radioactivity: [From P. Cusman's tark shield and construction materials, detector contamination in manufacture, naturally occurring radio-isotopes in target material

[Yue et al., arXiv:1602.02462]

Experiments: CDEX, PandaX

Zhao-Huan Yu (Melbourne)

 Basics
 Experiments
 Effective Lagrangians
 Homework

 0000000000
 0000000000
 000000000
 0

Exclusion Limits for SI Scattering

For **SI** scattering, the coherent enhancement allows us to treat protons and neutrons as the same species, "nucleons"

Zhao-Huan Yu (Melbourne)

 Basics
 Experiments
 Effective Lagrangians
 Homework

 0000000000
 0000000000
 000000000
 0

Exclusion Limits for SI Scattering

For **SI** scattering, the coherent enhancement allows us to treat protons and neutrons as the same species, "nucleons"

Zhao-Huan Yu (Melbourne)

Exclusion Limits for SD Scattering

- For SD scattering, specific detection material usually has very different sensitivities to WIMP-proton and WIMP-neutron cross sections
- As there is no coherent enhancement for SD scattering, the sensitivity is lower than the SI case by several orders of magnitude

Zhao-Huan Yu (Melbourne)

Basics Experiments Effective Lagrangians Homework

DAMA/LIBRA Annual Modulation "Signal"

- Highly radio-pure scintillating Nal(TI) crystals at Gran Sasso, Italy
 Annual modulation signal observed over 14 cycles at 9.3σ significance
- No background/signal discrimination

Basics Experiments Effective Lagrangians Homework

DAMA/LIBRA Annual Modulation "Signal"

- Highly radio-pure scintillating Nal(TI) crystals at Gran Sasso, Italy
- ⁽²⁾ Annual modulation signal observed over 14 cycles at 9.3 σ significance
- No background/signal discrimination

Service and the service of the servi

Zhao-Huan Yu (Melbourne)

Dark Matter Direct Detection

July 2017 21 / 37

Other Sources for DAMA/LIBRA Signal

The DAMA/LIBRA signal might be composed of neutrons liberated in the material surrounding the detector by two sources [Davis, arXiv:1407.1052, PRL]

- Atmospheric muons: flux depends on the temperature of the atmosphere, peaked on June 21st
- Solar neutrinos: flux depends on the distance between the Earth and the Sun, peaked on January 4th

Objection: Klinger & Kudryavtsev, "muon-induced neutrons do not explain the DAMA data," arXiv:1503.07225, PRL

Zhao-Huan Yu (Melbourne)

Basics	Experiments	Effective Lagrangians	Homework
	00000000000000		
Further Test	SABRE Project		

SABRE: Sodium iodide with Active Background REjection

- Complementary tests in both hemispheres: one part in Gran Sasso (Italy) and one part in Stawell (Australia)
- Developing **low background** scintillating NaI(TI) crystals that exceed the radio-purity of DAMA/LIBRA
- A well-shielded active veto to reduce internal and external backgrounds

 40 K \rightarrow 40 Ar, ~11% branch ratio

- 3 keV K shell X-ray, Auger e⁻
- Background at ~3 keV if γ escapes

1.46MeV γ can be detected by a veto. ⁴⁰K background can be rejected.

[From E. Barberio's talk]

Basics	Experiments	Effective Lagrangians	
0000000000	00000000000000	00000000	

Low Mass Situation

Zhao-Huan Yu (Melbourne)

Dark Matter Direct Detection

July 2017 24 / 37

Experiments

Effective Lagrangiar

Near Future Prospect

Neutrino Backgrounds

Basics

Direct detection experiments will be sensitive to **coherent neutrino-nucleus** scattering (CNS) due to astrophysical neutrinos [Billard *et al.*, arXiv:1307.5458, PRD]

 Solar neutrinos 10⁸ Event rate [(ton.year.keV)⁻¹] -0 -10 -01 -01 -01 -01 WIMP signal: m = 6 GeV/c², o = 4.4x10⁻⁴⁵ cm² • pp neutrinos: Total CNS background $p + p \rightarrow D + e^+ + \nu_e$ k neutrino-electron pep • ⁷Be neutrinos: $e^- + {}^7\text{Be} \rightarrow {}^7\text{Li} + \nu$ 8B 10² • pep neutrinos: $p + e^- + p \rightarrow D + \nu_e$ • ⁸B neutrinos: $^{8}B \rightarrow ^{8}Be^{*} + e^{+} + \nu_{a}$ 1 keV threshold: atmospheric • Hep neutrinos: 100 evt/ton/year on Ge detector 10^{-4} $^{3}\text{He} + p \rightarrow ^{4}\text{He} + e^{+} + \nu_{a}$ 10⁻³ 10⁻² 10^{-1} 1 Recoil energy [keV] • Atmospheric neutrinos [From J. Billard's talk (2016)]

Cosmic-ray collisions in the atmosphere

• Diffuse supernova neutrino background (DSNB)

All supernova explosions in the past history of the Universe

Zhao-Huan Yu (Melbourne)

		00000000	0
Going beyond	the Neutrino Floor		

Possible ways to reduce the impact of neutrino backgrounds:

- Reduction of systematic uncertainties on neutrino fluxes
- Utilization of different target nuclei [Ruppin et al., arXiv:1408.3581, PRD]
- Measurement of annual modulation [Davis, arXiv:1412.1475, JCAP]
- Measurement of nuclear recoil direction [O'Hare, et al., arXiv:1505.08061, PRD]

Zero Momentum Transfer Limit

- As the momentum transfer ($q_{\rm R}$ in the nucleus rest frame) is typically much smaller than the underlying energy scale (*e.g.*, mediator mass), the zero momentum transfer limit is a good approximation for calculation
- In this limit, the mediator field can be integrated out, and the interaction can be described by effective operators in effective field theory

 Basics
 Experiments
 Effective Lagrangians
 Homework

 00000000000
 0000000000
 0
 0

Effective Operators for DM-nucleon interactions

Assuming the DM particle is a **Dirac fermion** χ and using **Dirac fields** p and n to describe the proton and the neutron, the effective Lagrangian reads

 $\mathcal{L}_{\mathrm{eff},N} = \sum_{N=p,n} \sum_{ij} G_{N,ij} \bar{\chi} \Gamma^{i} \chi \bar{N} \Gamma_{j} N, \quad \Gamma^{i}, \Gamma^{j} \in \{1, i\gamma_{5}, \gamma^{\mu}, \gamma^{\mu} \gamma_{5}, \sigma^{\mu\nu}\}$

[Bélanger et al., arXiv:0803.2360, Comput.Phys.Commun.]

- Lorentz indices in Γ^i and Γ_j should be contracted in pair
- Effective couplings $G_{N,ij}$ have a mass dimension of -2: $[G_{N,ij}] = [Mass]^{-2}$
- $\bar{\chi}\chi\bar{N}N$ and $\bar{\chi}\gamma^{\mu}\chi\bar{N}\gamma_{\mu}N$ lead to **SI** DM-nucleon scattering
- $\bar{\chi}\gamma^{\mu}\gamma_{5}\chi\bar{N}\gamma_{\mu}\gamma_{5}N$ and $\bar{\chi}\sigma^{\mu\nu}\chi\bar{N}\sigma_{\mu\nu}N$ lead to **SD** DM-nucleon scattering
- The following operators lead to scattering cross sections $\sigma_{\chi N} \propto v^2$: $\bar{\chi} i \gamma_5 \chi \bar{N} i \gamma_5 N$, $\bar{\chi} \chi \bar{N} i \gamma_5 N$, $\bar{\chi} i \gamma_5 \chi \bar{N} N$, $\bar{\chi} \gamma^{\mu} \chi \bar{N} \gamma_{\mu} \gamma_5 N$, $\bar{\chi} \gamma^{\mu} \gamma_5 \chi \bar{N} \gamma_{\mu} N$
- For a Majorana fermion χ instead, we have $\bar{\chi}\gamma^{\mu}\chi = 0$ and $\bar{\chi}\sigma^{\mu\nu}\chi = 0$, and hence the related operators vanish

Zhao-Huan Yu (Melbourne)

Higgs Portal for Majorana Fermionic DM

Interactions for a Majorana fermion χ , the SM Higgs boson *h*, and quarks *q*:

$$\mathcal{L}_{\rm DM} \supset \frac{1}{2} g_{\chi} h \bar{\chi} \chi$$
$$\mathcal{L}_{\rm SM} \supset -\sum_{q} \frac{m_{q}}{v} h \bar{q} q, \quad q = d, u, s, c, b, t$$

The amplitude for
$$\chi(p_1) + q(k_1) \rightarrow \chi(p_2) + q(k_2)$$
:
 $i\mathcal{M} = ig_{\chi}\bar{u}(p_2)u(p_1)\frac{i}{q^2 - m_h^2} \left(-i\frac{m_q}{\nu}\right)\bar{u}(k_2)u(k_1)$

Zero momentum transfer $~\Downarrow~~ q^2 = (k_2 - k_1)^2 \rightarrow 0$

$$i\mathcal{M} = -i\frac{g_{\chi}m_q}{\nu m_h^2}\bar{u}(p_2)u(p_1)\bar{u}(k_2)u(k_1)$$

$$\downarrow$$

$$\mathcal{L}_{\text{eff},q} = \sum_{q} G_{\text{S},q}\bar{\chi}\chi\bar{q}q, \quad G_{\text{S},q} = -\frac{g_{\chi}m_q}{2\nu m_h^2}$$

Zhao-Huan Yu (Melbourne)

Effective Lagrangian: Scalar Type

1

Scalar-type effective Lagrangian for a spin-1/2 fermion χ :

$$\mathcal{L}_{S,q} = \sum_{q} G_{S,q} \bar{\chi} \chi \bar{q} q \quad \Rightarrow \quad \mathcal{L}_{S,N} = \sum_{N=p,n} G_{S,N} \bar{\chi} \chi \bar{N} N$$
$$G_{S,N} = m_N \left(\sum_{q=u,d,s} \frac{G_{S,q}}{m_q} f_q^N + \sum_{q=c,b,t} \frac{G_{S,q}}{m_q} f_Q^N \right)$$

The second term accounts for DM interactions with gluons through loops of heavy quarks (c, b, and t): $f_Q^N = \frac{2}{27} \left(1 - \sum_{q=u,d,s} f_q^N\right)$

Form factor f_q^N is the contribution of q to m_N : $\langle N | m_q \bar{q} q | N \rangle = f_q^N m_N$ $f_u^P \simeq 0.020, \quad f_d^P \simeq 0.026, \quad f_u^n \simeq 0.014, \quad f_d^n \simeq 0.036, \quad f_s^P = f_s^n \simeq 0.118$ [Ellis *et al.*, arXiv:hep-ph/0001005, PLB]

The scalar type induces SI DM-nucleon scattering with a cross section of

$$\sigma_{\chi N}^{\rm SI} = \frac{n_{\chi}}{\pi} \mu_{\chi N}^2 G_{\rm S,N}^2, \quad \mu_{\chi N} \equiv \frac{m_{\chi} m_N}{m_{\chi} + m_N}, \quad n_{\chi} = \begin{cases} 1, & \text{for Dirac fermion } \chi \\ 4, & \text{for Majorana fermion } \chi \end{cases}$$

Z Portal for Majorana Fermionic DM

Interactions for a Majorana fermion χ , the Z boson, and quarks q:

$$\mathcal{L}_{\rm DM} \supset \frac{1}{2} g_{\chi} Z_{\mu} \bar{\chi} \gamma^{\mu} \gamma_5 \chi, \quad \mathcal{L}_{\rm SM} \supset \frac{g}{2c_{\rm W}} Z_{\mu} \sum_{q} \bar{q} \gamma^{\mu} (g_{\rm V}^{q} - g_{\rm A}^{q} \gamma_5) q$$
$$g_{\rm V}^{u_i} = \frac{1}{2} - \frac{4}{3} s_{\rm W}^2, \quad g_{\rm V}^{d_i} = -\frac{1}{2} + \frac{2}{3} s_{\rm W}^2, \quad g_{\rm A}^{u_i} = \frac{1}{2} = -g_{\rm A}^{d_i}, \quad c_{\rm W} \equiv \cos \theta_{\rm W}, \quad s_{\rm W} \equiv \sin \theta_{\rm W}$$

Z boson propagator
$$\frac{-i}{q^2 - m_Z^2} \left(g_{\mu\nu} - \frac{q_\mu q_\nu}{m_Z^2} \right) \xrightarrow{q^2 \to 0} \frac{i}{m_Z^2} g_{\mu\nu}$$

Effective Lagrangian in the zero momentum transfer limit:

$$\mathcal{L}_{\mathrm{eff},q} = \sum_{q} \bar{\chi} \gamma^{\mu} \gamma_{5} \chi (G_{\mathrm{A},q} \bar{q} \gamma_{\mu} \gamma_{5} q + G_{\mathrm{AV},q} \bar{q} \gamma_{\mu} q), \quad G_{\mathrm{A},q} = \frac{g_{\chi} g g_{\mathrm{A}}^{q}}{4c_{\mathrm{W}} m_{Z}^{2}}$$

 $G_{\rm AV,q} = -\frac{g_{\chi}gg_{\rm V}^q}{4c_{\rm W}m_Z^2}$ leads to $\sigma_{\chi N} \propto v^2$ and can be neglected for direct detection

Effective Lagrangian: Axial Vector Type

Axial-vector-type effective Lagrangian for a spin-1/2 fermion χ :

$$\begin{aligned} \mathcal{L}_{\mathrm{A},q} &= \sum_{q} G_{\mathrm{A},q} \bar{\chi} \gamma^{\mu} \gamma_{5} \chi \bar{q} \gamma_{\mu} \gamma_{5} q \quad \Rightarrow \quad \mathcal{L}_{\mathrm{A},N} = \sum_{N=p,n} G_{\mathrm{A},N} \bar{\chi} \gamma^{\mu} \gamma_{5} \chi \bar{N} \gamma_{\mu} \gamma_{5} N \\ G_{\mathrm{A},N} &= \sum_{q=u,d,s} G_{\mathrm{A},q} \Delta_{q}^{N}, \quad 2 \Delta_{q}^{N} s_{\mu} \equiv \langle N | \bar{q} \gamma_{\mu} \gamma_{5} q | N \rangle \end{aligned}$$

Form factors Δ_q^N account the contributions of quarks and anti-quarks to the nucleon spin vector s_{μ} , and can be extracted from lepton-proton scattering data:

$$\begin{split} \Delta^p_u = \Delta^n_d \simeq 0.842, \quad \Delta^p_d = \Delta^n_u \simeq -0.427, \quad \Delta^p_s = \Delta^n_s \simeq -0.085 \\ \text{[HERMES coll., arXiv:hep-ex/0609039, PRD]} \end{split}$$

Neutron form factors are related to proton form factors by isospin symmetry

The axial vector type induces **SD** DM-nucleon scattering:

$$\sigma_{\chi N}^{\rm SD} = \frac{3n_{\chi}}{\pi} \mu_{\chi N}^2 G_{\rm A,N}^2, \quad n_{\chi} = \begin{cases} 1, & \text{for Dirac fermion } \chi \\ 4, & \text{for Majorana fermion } \chi \end{cases}$$

Basics	Experiments Effective Lagrangians	Effective Lagrangians	Homework
0000000000	0000000000000	000000000	0

Z Portal for Complex Scalar DM

Interactions for a **complex scalar** χ , the Z **boson**, and quarks q:

$$\mathcal{L}_{\rm DM} \supset g_{\chi} Z_{\mu} (\chi^* i \overleftrightarrow{\partial^{\mu}} \chi)$$

$$\mathcal{L}_{\rm SM} \supset \frac{g}{2c_{\rm W}} Z_{\mu} \sum_{q} \bar{q} \gamma^{\mu} (g_{\rm V}^{q} - g_{\rm A}^{q} \gamma_{5}) q$$

$$i\mathcal{M} = ig_{\chi} (p_{1} + p_{2})^{\mu} \frac{-i(g_{\mu\nu} - q_{\mu}q_{\nu}/m_{Z}^{2})}{q^{2} - m_{Z}^{2}} \chi^{2}$$

$$\times i \frac{g}{2c_{\rm W}} \bar{u}(k_{2}) \gamma^{\nu} (g_{\rm V}^{q} - g_{\rm A}^{q} \gamma_{5}) u(k_{1})$$

$$\frac{q^{2} \rightarrow 0}{\rightarrow} -i \frac{g_{\chi}g}{2c_{\rm W}m_{Z}^{2}} (p_{1} + p_{2})^{\mu} \bar{u}(k_{2}) \gamma_{\mu} (g_{\rm V}^{q} - g_{\rm A}^{q} \gamma_{5}) u(k_{1})$$

$$\mathcal{L}_{\rm eff,q} = \sum_{q} (\chi^* i \overleftrightarrow{\partial^{\mu}} \chi) (F_{\rm V,q} \bar{q} \gamma_{\mu} q + F_{\rm VA,q} \bar{q} \gamma_{\mu} \gamma_{5} q)$$

$$F_{\mathrm{V},q} = -\frac{g_{\chi}gg_{\mathrm{V}}^{q}}{2c_{\mathrm{W}}m_{Z}^{2}}, \quad F_{\mathrm{VA},q} = \frac{g_{\chi}gg_{\mathrm{A}}^{q}}{2c_{\mathrm{W}}m_{Z}^{2}} (\Rightarrow \sigma_{\chi N} \propto \nu^{2})$$

)

Basics	Experiments	Effective Lagrangians	Homework
0000000000	0000000000000	00000000	
Effective Lagran	gian: Vector Type		

The sector-type effective Lagrangian for a complex scalar χ :

$$\mathcal{L}_{\mathrm{V},q} = \sum_{q} F_{\mathrm{V},q}(\chi^* i\overleftrightarrow{\partial^{\mu}}\chi)\bar{q}\gamma_{\mu}q \quad \Rightarrow \quad \mathcal{L}_{\mathrm{A},N} = \sum_{N=p,n} F_{\mathrm{V},N}(\chi^* i\overleftrightarrow{\partial^{\mu}}\chi)\bar{N}\gamma_{\mu}N$$

The relation between $F_{V,N}$ and $F_{V,q}$ reflects the valence quark numbers in N:

$$F_{V,p} = 2F_{V,u} + F_{V,d}, \quad F_{V,n} = F_{V,u} + 2F_{V,d}$$

The vector type induces **SI** DM-nucleon scattering: $\sigma_{\chi N}^{SI} = \frac{1}{\pi} \mu_{\chi N}^2 F_{V,N}^2$

The terminal termina

$$\mathcal{L}_{\mathbf{V},q} = \sum_{q} G_{\mathbf{V},q} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q \quad \Rightarrow \quad \mathcal{L}_{\mathbf{A},N} = \sum_{N=p,n} G_{\mathbf{V},N} \bar{\chi} \gamma^{\mu} \chi \bar{N} \gamma_{\mu} N$$

It also induces **SI** DM-nucleon scattering:

$$\sigma_{\chi N}^{\rm SI} = \frac{1}{\pi} \mu_{\chi N}^2 G_{{\rm V},N}^2, \quad G_{{\rm V},p} = 2G_{{\rm V},u} + G_{{\rm V},d}, \quad G_{{\rm V},n} = G_{{\rm V},u} + 2G_{{\rm V},d}$$

Zhao-Huan Yu (Melbourne)

Basics	Experiments	Effective Lagrangians	
0000000000	0000000000000	00000000	

Effective Operators for DM-quark Interactions

	Spin-1/2 DM	Spin-0 DM
SI	$ar{\chi}\chiar{q}q,\ ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	$\chi^*\chi \bar{q}q, \ (\chi^*i\overleftrightarrow{\partial^\mu}\chi) \bar{q}\gamma_\mu q$
SD	$ar{\chi}\gamma^{\mu}\gamma_5\chiar{q}\gamma_{\mu}\gamma_5 q,\ ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$	
$\sigma_{\chi N} \propto v^2$	$ar{\chi}i\gamma_5\chiar{q}i\gamma_5q, \ ar{\chi}\chiar{q}i\gamma_5q \ ar{\chi}\chiar{q}i\gamma_5q \ ar{\chi}i\gamma_5\chiar{q}q, \ ar{\chi}\gamma^{\mu}\chiar{q}\gamma_{\mu}\gamma_5q \ ar{\chi}\gamma^{\mu}\gamma_5\chiar{q}\gamma_{\mu}q, \ arepsilon^{ u\nu ho\sigma}ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{ ho\sigma}q$	$\chi^* \chi \bar{q} i \gamma_5 q$ $(\chi^* i \overleftrightarrow{\partial^\mu} \chi) \bar{q} \gamma_\mu \gamma_5 q$
	Spin-3/2 DM	Spin-1 DM
SI	$ar{\chi}^{\mu}\chi_{\mu}ar{q}q,\ \ ar{\chi}^{ u}\gamma^{\mu}\chi_{ u}ar{q}\gamma_{\mu}q$	$\chi^*_\mu \chi^\mu \bar{q} q$, $(\chi^*_\nu i \overleftrightarrow{\partial^\mu} \chi^\nu) \bar{q} \gamma_\mu q$
SD	$ar{\chi}^{ u}\gamma^{\mu}\gamma_{5}\chi_{ u}ar{q}\gamma_{\mu}\gamma_{5}q, \ \ ar{\chi}^{ ho}\sigma^{\mu u}\chi_{ ho}ar{q}\sigma_{\mu u}q$ $i(ar{\chi}^{\mu}\chi^{ u} - ar{\chi}^{ u}\chi^{\mu})ar{q}\sigma_{\mu u}q$	$i(\chi_{\mu}^{*}\chi_{\nu} - \chi_{\nu}^{*}\chi_{\mu})\bar{q}\sigma^{\mu\nu}q$ $\varepsilon^{\mu\nu\rho\sigma}(\chi_{\mu}^{*}\overleftrightarrow{\partial_{\nu}}\chi_{\rho})\bar{q}\gamma_{\sigma}\gamma_{5}q$
$\sigma_{\chi N} \propto v^2$	$\begin{split} \bar{\chi}^{\mu} i\gamma_{5}\chi_{\mu}\bar{q}i\gamma_{5}q, \bar{\chi}^{\mu}\chi_{\mu}\bar{q}i\gamma_{5}q \\ \bar{\chi}^{\mu} i\gamma_{5}\chi_{\mu}\bar{q}q, \bar{\chi}^{\nu}\gamma^{\mu}\chi_{\nu}\bar{q}\gamma_{\mu}\gamma_{5}q \\ \bar{\chi}^{\mu}\gamma^{\mu}\gamma_{5}\chi_{\nu}\bar{q}\gamma_{\mu}q, \varepsilon^{\mu\nu\rho\sigma}i(\bar{\chi}_{\mu}\chi_{\nu}-\bar{\chi}_{\nu}\chi_{\mu})\bar{q}\sigma_{\rho\sigma}q \\ \varepsilon^{\mu\nu\rho\sigma}\bar{\chi}^{a}\sigma_{\mu\nu}\chi_{a}\bar{q}\sigma_{\rho\sigma}q, (\bar{\chi}^{\mu}\gamma_{5}\chi^{\nu}-\bar{\chi}^{\nu}\gamma_{5}\chi^{\mu})\bar{q}\sigma_{\mu\nu}q \\ \varepsilon^{\mu\nu\rho\sigma}(\bar{\chi}_{\mu}\gamma_{5}\chi_{\nu}-\bar{\chi}_{\nu}\gamma_{5}\chi_{\mu})\bar{q}\sigma_{\rho\sigma}q \end{split}$	$\begin{split} \chi^*_{\mu} \chi^{\mu} \bar{q} i \gamma_5 q \\ (\chi^*_{\nu} i \overleftrightarrow{\partial^{\mu}} \chi^{\nu}) \bar{q} \gamma_{\mu} \gamma_5 q \\ \varepsilon^{\mu\nu\rho\sigma} (\chi^*_{\mu} \overleftrightarrow{\partial_{\nu}} \chi_{\rho}) \bar{q} \gamma_{\sigma} q \\ \varepsilon^{\mu\nu\rho\sigma} i (\chi^*_{\mu} \chi_{\nu} - \chi^*_{\nu} \chi_{\mu}) \bar{q} \sigma_{\rho\sigma} q \end{split}$

[Zheng, ZHY, Shao, Bi, Li, Zhang, arXiv:1012.2022, NPB; ZHY, Zheng, Bi, Li, Yao, Zhang, arXiv:1112.6052, NPB; Ding & Liao, arXiv:1201.0506, JHEP]

Zhao-Huan Yu (Melbourne)

Basics 0000000000	Experiments 000000000000	Effective Lagrangians	Homework
Homework			

- **1** Derive the speed distribution f(v) in Page 8 from $f(v) = \tilde{f}(v + v_{obs})$
- Calculate the normalization factor for the velocity distribution *f*(*v*) in Page 7 if the escape velocity v_{esc} is taken into account
- Derive the recoil velocity $v_{\rm R}$ in Page 9 from the laws of energy and momentum conservation
- Examine the conservation of electric charge, lepton number, and baryon number for the reactions producing solar neutrinos in Page 26
- Evaluate the values of DM-nucleon effective couplings $G_{S,p}$ ($G_{A,p}$) and $G_{S,n}$ ($G_{A,n}$) for the Higgs-portal (Z-portal) model in Page 30 (32) using the values of form factors listed in Page 31 (33)
- Proof the expressions for $\sigma_{\chi N}^{SI}$ and $\sigma_{\chi N}^{SD}$ shown in Pages 31, 33, and 35
- Examine the hermiticity of the operators tabulated in Page 36