Lectures on Standard Model Effective Field Theory

Yi Liao

Nankai Univ

Outline

1 Lecture 5: SMEFT - Dimension-five and -seven Operators

2 Dim-5 operator

3 Dim-7 operators

4 Hilbert series: a powerful tool for counting operators

Outline

1 Lecture 5: SMEFT - Dimension-five and -seven Operators

2 Dim-5 operator

3 Dim-7 operators

4 Hilbert series: a powerful tool for counting operators

Difference between dim-6 and dim-5/7 operators

Caution at the very start:
Effective interactions of dim-5 and dim-7 may arise from UV physics different from those of dim-6, because of different symmetry:

- dim-6 operators include B - and L-conserving ones plus B - and L-violating but $B-L$ conserving ones;

■ dim-5 operator violates L but not B (without involving quarks)
■ all dim-7 operators violate L; some conserve $B(L= \pm 2, B=0)$, and others violate both B and $L(L=-B= \pm 1)$.

Difference between dim-6 and dim-5/7 operators

Caution at the very start:
Effective interactions of dim-5 and dim-7 may arise from UV physics different from those of dim-6, because of different symmetry:

- dim-6 operators include B - and L-conserving ones plus B - and L-violating but $B-L$ conserving ones;
■ dim-5 operator violates L but not B (without involving quarks);
■ all dim-7 operators violate L; some conserve $B(L= \pm 2, B=0)$, and others violate both B and $L(L=-B= \pm 1)$

Difference between dim-6 and dim-5/7 operators

Caution at the very start:
Effective interactions of dim-5 and dim-7 may arise from UV physics different from those of dim-6, because of different symmetry:

- dim-6 operators include B - and L-conserving ones plus B - and L-violating but $B-L$ conserving ones;
- dim-5 operator violates L but not B (without involving quarks);
- all dim-7 operators violate L; some conserve $B(L= \pm 2, B=0)$, and others violate both B and $L(L=-B= \pm 1)$.

Outline

1 Lecture 5: SMEFT - Dimension-five and -seven Operators

2 Dim-5 operator

3 Dim-7 operators

4 Hilbert series: a powerful tool for counting operators

Dim-5 operator

■ Without counting flavors there is a unique dim-5 operator:

$$
\begin{align*}
& \mathscr{L}_{5}= \frac{1}{4} \kappa_{g f} \overline{\left(L_{m}^{g}\right)^{C}} \varepsilon^{m n} H_{n} L_{j}^{f} \varepsilon^{j i} H_{i}+\text { h.c. } \quad \begin{array}{l}
i, j, m, n: S U(2)_{L} \text { indices } \\
f, g: \text { flavor indices }
\end{array} \tag{1}\\
& \psi^{C}=C \bar{\psi}^{T} \leftrightarrow \overline{\psi^{C}}=\psi^{T} C \text { charge conjugation, } \\
& C^{T}=C^{\dagger}=-C, C^{2}=-1 ; \kappa: \text { complex and symmetric }
\end{align*}
$$

■ In unitary gauge, $H^{\top} \rightarrow(0, v+h) / \sqrt{2}$,

$$
\frac{1}{4} \frac{1}{2}(v+h)^{2} \kappa_{g f} \overline{\left(v^{g}\right)^{C}} v^{f}+\text { h.c. } \Rightarrow m_{v}=-\frac{1}{4} v^{2} \kappa \begin{aligned}
& \text { complex } \\
& \text { symmetric }
\end{aligned}
$$

Difficult to detect hv interactions. Not much to do with \mathscr{L}_{5} beyond m_{v}
■ E. Ma (1998): Three ways to realize \mathscr{L}_{5} at tree level, corresponding exactly to three standard seesaw mechanisms.

■ \mathscr{L}_{5} is induced at a high seesaw scale M, where some heavy particles are integrated out. RG running should be included for low energy phys.

Dim-5 operator

■ Without counting flavors there is a unique dim-5 operator:

$$
\begin{align*}
\mathscr{L}_{5}= & \frac{1}{4} \kappa_{g f} \overline{\left(L_{m}^{g}\right)^{C}} \varepsilon^{m n} H_{n} L_{j}^{f} \varepsilon^{j i} H_{i}+\text { h.c. } \quad \begin{array}{c}
i, j, m, n: S U(2)_{L} \text { indices } \\
f, g: \text { flavor indices }
\end{array} \tag{1}\\
& \psi^{C}=C \bar{\psi}^{T} \leftrightarrow \overline{\psi^{C}}=\psi^{T} C \text { charge conjugation, } \\
& C^{T}=C^{\dagger}=-C, C^{2}=-1 ; \kappa: \text { complex and symmetric }
\end{align*}
$$

■ In unitary gauge, $H^{\top} \rightarrow(0, v+h) / \sqrt{2}$,

$$
\mathscr{L}_{5}=\frac{1}{4} \frac{1}{2}(v+h)^{2} \kappa_{g f} \overline{\left(v^{g}\right)^{C}} v^{f}+\text { h.c. } \Rightarrow m_{v}=-\frac{1}{4} v^{2} \kappa \begin{align*}
& \text { complex } \tag{2}\\
& \text { symmetric }
\end{align*}
$$

Difficult to detect $h v$ interactions. Not much to do with \mathscr{L}_{5} beyond m_{v}.
■ E. Ma (1998): Three ways to realize \mathscr{L}_{5} at tree level, corresponding exactly to three standard seesaw mechanisms.

- \mathscr{L}_{5} is induced at a high seesaw scale M, where some heavy particles are integrated out. RG running should be included for low energy phys.

Dim-5 operator

■ Without counting flavors there is a unique dim-5 operator:

$$
\begin{align*}
\mathscr{L}_{5}= & \frac{1}{4} \kappa_{g f} \overline{\left(L_{m}^{g}\right)^{C}} \varepsilon^{m n} H_{n} L_{j}^{f} \varepsilon^{j i} H_{i}+\text { h.c. } \quad \begin{array}{l}
i, j, m, n: S U(2)_{L} \text { indices } \\
f, g: \text { flavor indices }
\end{array} \tag{1}\\
& \psi^{C}=C \bar{\psi}^{T} \leftrightarrow \overline{\psi^{C}}=\psi^{T} C \text { charge conjugation, } \\
& C^{T}=C^{\dagger}=-C, C^{2}=-1 ; \kappa: \text { complex and symmetric }
\end{align*}
$$

■ In unitary gauge, $H^{\top} \rightarrow(0, v+h) / \sqrt{2}$,

$$
\mathscr{L}_{5}=\frac{1}{4} \frac{1}{2}(v+h)^{2} \kappa_{g f} \overline{\left(v^{g}\right)^{C}} v^{f}+\text { h.c. } \Rightarrow m_{v}=-\frac{1}{4} v^{2} \kappa \begin{align*}
& \text { complex } \tag{2}\\
& \text { symmetric }
\end{align*}
$$

Difficult to detect $h v$ interactions. Not much to do with \mathscr{L}_{5} beyond m_{v}.
■ E. Ma (1998): Three ways to realize \mathscr{L}_{5} at tree level, corresponding exactly to three standard seesaw mechanisms.

- \mathscr{L}_{5} is induced at a high seesaw scale M, where some heavy particles are integrated out. RG running should be included for low energy phys.

Dim-5 operator

■ Without counting flavors there is a unique dim-5 operator:

$$
\begin{align*}
\mathscr{L}_{5}= & \frac{1}{4} \kappa_{g f} \overline{\left(L_{m}^{g}\right)^{C}} \varepsilon^{m n} H_{n} L_{j}^{f} \varepsilon^{j i} H_{i}+\text { h.c. } \quad \begin{array}{l}
i, j, m, n: S U(2)_{L} \text { indices } \\
f, g: \text { flavor indices }
\end{array} \tag{1}\\
& \psi^{C}=C \bar{\psi}^{T} \leftrightarrow \overline{\psi^{C}}=\psi^{T} C \text { charge conjugation, } \\
& C^{T}=C^{\dagger}=-C, C^{2}=-1 ; \kappa: \text { complex and symmetric }
\end{align*}
$$

■ In unitary gauge, $H^{\top} \rightarrow(0, v+h) / \sqrt{2}$,

$$
\mathscr{L}_{5}=\frac{1}{4} \frac{1}{2}(v+h)^{2} \kappa_{g f} \overline{\left(v^{g}\right)^{C}} v^{f}+\text { h.c. } \Rightarrow m_{v}=-\frac{1}{4} v^{2} \kappa \begin{align*}
& \text { complex } \tag{2}\\
& \text { symmetric }
\end{align*}
$$

Difficult to detect $h v$ interactions. Not much to do with \mathscr{L}_{5} beyond m_{v}.
■ E. Ma (1998): Three ways to realize \mathscr{L}_{5} at tree level, corresponding exactly to three standard seesaw mechanisms.

- \mathscr{L}_{5} is induced at a high seesaw scale M, where some heavy particles are integrated out. RG running should be included for low energy phys.

RG running of \mathscr{L}_{5}

Literature:

■ P.H. Chankowski and Z. Pluciennik, Renormalization group equations for seesaw neutrino masses, Phys. Lett. B 316 (1993) 312 [hep-ph/9306333]

■ K.S. Babu, C.N. Leung and J.T. Pantaleone, Renormalization of the neutrino mass operator, Phys. Lett. B 319 (1993) 191 [hep-ph/9309223]

■ S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization revisited, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005]

■ S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization in two Higgs doublet models and the MSSM, Phys. Lett. B 525 (2002) 130 [hep-ph/0110366]

RG running of \mathscr{L}_{5}

Literature:

■ P.H. Chankowski and Z. Pluciennik, Renormalization group equations for seesaw neutrino masses, Phys. Lett. B 316 (1993) 312 [hep-ph/9306333]

- K.S. Babu, C.N. Leung and J.T. Pantaleone, Renormalization of the neutrino mass operator, Phys. Lett. B 319 (1993) 191 [hep-ph/9309223]

■ S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization revisited, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005]

■ S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization in two Higgs doublet models and the MSSM, Phys. Lett. B 525 (2002) 130 [hep-ph/0110366]

RG running of \mathscr{L}_{5}

Literature:

■ P.H. Chankowski and Z. Pluciennik, Renormalization group equations for seesaw neutrino masses, Phys. Lett. B 316 (1993) 312 [hep-ph/9306333]

- K.S. Babu, C.N. Leung and J.T. Pantaleone, Renormalization of the neutrino mass operator, Phys. Lett. B 319 (1993) 191 [hep-ph/9309223]

■ S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization revisited, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005]

■ S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization in two Higgs doublet models and the MSSM, Phys. Lett. B 525 (2002) 130 [hep-ph/0110366]

RG running of \mathscr{L}_{5}

Literature:

■ P.H. Chankowski and Z. Pluciennik, Renormalization group equations for seesaw neutrino masses, Phys. Lett. B 316 (1993) 312 [hep-ph/9306333]

- K.S. Babu, C.N. Leung and J.T. Pantaleone, Renormalization of the neutrino mass operator, Phys. Lett. B 319 (1993) 191 [hep-ph/9309223]
- S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization revisited, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005]

■ S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization in two Higgs doublet models and the MSSM, Phys. Lett. B 525 (2002) 130 [hep-ph/0110366]

RG running of \mathscr{L}_{5} : Sketch of calculation

κ : symmetric matrix, not necessarily multiplicatively renormalizable. We proceed a bit differently from what we did in Lecture 3.
■ Consider \mathscr{L}_{5} as given in bare quantities $\kappa_{\text {bare }}, L_{\text {bare }}=Z_{L}^{1 / 2} L, H_{\text {bare }}=Z_{H}^{1 / 2} \mathrm{H}$:

$$
\begin{align*}
\mathscr{L}_{5} & =\frac{1}{4} \varepsilon^{m n} \varepsilon^{j i} Z_{H} \overline{\left(L_{m}\right)^{C}}\left(Z_{L}^{1 / 2}\right)^{T} \kappa_{\text {bare }} Z_{L}^{1 / 2} L_{j} H_{n} H_{i}+\text { h.c. } \tag{3}\\
& =\frac{1}{4} \mu^{2 \varepsilon} \varepsilon^{m n} \varepsilon^{j i} \overline{\left(L_{m}\right)^{C}}(\kappa+\delta \kappa) L_{j} H_{n} H_{i}+\text { h.c. } \tag{4}
\end{align*}
$$

where $Z_{L}^{1 / 2}$ is a matrix in flavor space and $\delta \kappa$ is the c.t. defined by

$$
\begin{equation*}
Z_{H}\left(Z_{L}^{1 / 2}\right)^{T} \kappa_{\text {bare }} Z_{L}^{1 / 2}=(\kappa+\delta \kappa) \mu^{2 \varepsilon} \tag{5}
\end{equation*}
$$

■ Compute one-loop diagrams contributing to LLHH with one insertion of \mathscr{L}_{5} and any number of SM couplings.

RG running of \mathscr{L}_{5} : Sketch of calculation

κ : symmetric matrix, not necessarily multiplicatively renormalizable. We proceed a bit differently from what we did in Lecture 3.
■ Consider \mathscr{L}_{5} as given in bare quantities $\kappa_{\text {bare }}, L_{\text {bare }}=Z_{L}^{1 / 2} L, H_{\text {bare }}=Z_{H}^{1 / 2} H$:

$$
\begin{align*}
\mathscr{L}_{5} & =\frac{1}{4} \varepsilon^{m n} \varepsilon^{j i} Z_{H} \overline{\left(L_{m}\right)^{C}}\left(Z_{L}^{1 / 2}\right)^{T} \kappa_{\text {bare }} Z_{L}^{1 / 2} L_{j} H_{n} H_{i}+\text { h.c. } \tag{3}\\
& =\frac{1}{4} \mu^{2 \varepsilon} \varepsilon^{m n} \varepsilon^{j i} \overline{\left(L_{m}\right)^{C}}(\kappa+\delta \kappa) L_{j} H_{n} H_{i}+\text { h.c. } \tag{4}
\end{align*}
$$

where $Z_{L}^{1 / 2}$ is a matrix in flavor space and $\delta \kappa$ is the c.t. defined by

$$
\begin{equation*}
Z_{H}\left(Z_{L}^{1 / 2}\right)^{T} \kappa_{\text {bare }} Z_{L}^{1 / 2}=(\kappa+\delta \kappa) \mu^{2 \varepsilon} \tag{5}
\end{equation*}
$$

■ Compute one-loop diagrams contributing to LLHH with one insertion of \mathscr{L}_{5} and any number of SM couplings.

RG running of \mathscr{L}_{5} : Sketch of calculation

RG running of \mathscr{L}_{5} : Sketch of calculation

■ Determine c.t. by requiring it to cancel UV divergences in the above diagrams. Z_{H}, z_{L} are known in $S M$.
■ Denote for simplicity $Z_{L}^{1 / 2}=A$.

RG running of \mathscr{L}_{5} : Sketch of calculation

■ Determine c.t. by requiring it to cancel UV divergences in the above diagrams. Z_{H}, Z_{L} are known in $S M$.
■ Denote for simplicity $Z_{L}^{1 / 2}=A$.

$$
\begin{align*}
& \quad \frac{d \kappa_{\mathrm{bare}}}{d \mu}=0 \rightarrow \mu \frac{d}{d \mu} \text { eq.(5) : } \\
& \\
& \mu \frac{d Z_{H}}{d \mu} A^{T} \kappa_{\mathrm{b} a r e} A+Z_{H} \mu \frac{d A^{T}}{d \mu} \kappa_{\mathrm{bare}} A+Z_{H} A^{T} \kappa_{\text {bare }} \mu \frac{d A}{d \mu} \tag{6}\\
& =\left[\mu \frac{d \kappa}{d \mu}+\mu \frac{d \delta \kappa}{d \mu}+2 \varepsilon(\kappa+\delta \kappa)\right] \mu^{2 \varepsilon} \\
& \Rightarrow \quad \mu \frac{d \ln Z_{H}}{d \mu}(\kappa+\delta \kappa)+\mu \frac{d A^{T}}{d \mu}\left(A^{-1}\right)^{T}(\kappa+\delta \kappa) A+(\kappa+\delta \kappa) A^{-1} \mu \frac{d A}{d \mu} \tag{7}\\
& =\mu \frac{d \kappa}{d \mu}+\mu \frac{d \delta \kappa}{d \mu}+2 \varepsilon(\kappa+\delta \kappa)
\end{align*}
$$

RG running of \mathscr{L}_{5} : Sketch of calculation

■ Denote renormalization of SM couplings collectively by

$$
\begin{align*}
& g_{0}=Z_{g} g \mu^{n_{g} \varepsilon}, n_{g}=\left\{\begin{array}{l}
2 \text { for } g=\lambda \\
1 \text { for gauge/Yukawa couplings }
\end{array}\right. \tag{8}\\
& \mu \frac{d g_{0}}{d \mu}=0 \Rightarrow \beta_{g}=-n_{g} \varepsilon g-\mu \frac{d \ln Z_{g}}{d \mu} g, \begin{array}{l}
\text { highest power } \varepsilon^{1}, \text { lowest order in } g \\
\text { highest power } \varepsilon^{0}, \text { higher order in } g
\end{array} \tag{9}
\end{align*}
$$

■ Consider eq.(7). The highest power in ε on Ihs is 0 , thus

$$
\beta_{\kappa}=\mu \frac{d \kappa}{d \mu}=-2 \varepsilon \kappa+O\left(\varepsilon^{0}\right)
$$

This is as expected. It also has the following implications.
■ Denote $\delta k=\kappa_{p r}(c g)_{p r}$ with $g=\lambda,\left(g_{1,2,3}, Y_{f}\right)^{2}$

RG running of \mathscr{L}_{5} : Sketch of calculation

■ Denote renormalization of SM couplings collectively by

$$
\begin{align*}
& g_{0}=Z_{g} g \mu^{n_{g} \varepsilon}, n_{g}=\left\{\begin{array}{l}
2 \text { for } g=\lambda \\
1 \text { for gauge/Yukawa couplings }
\end{array}\right. \tag{8}\\
& \mu \frac{d g_{0}}{d \mu}=0 \Rightarrow \beta_{g}=-n_{g} \varepsilon g-\mu \frac{d \ln Z_{g}}{d \mu} g, \begin{array}{l}
\text { highest power } \varepsilon^{1}, \text { lowest order in } g \\
\text { highest power } \varepsilon^{0}, \text { higher order in } g
\end{array} \tag{9}
\end{align*}
$$

■ Consider eq.(7). The highest power in ε on Ihs is 0 , thus

$$
\begin{equation*}
\beta_{\kappa}=\mu \frac{d \kappa}{d \mu}=-2 \varepsilon \kappa+O\left(\varepsilon^{0}\right) \tag{10}
\end{equation*}
$$

This is as expected. It also has the following implications.
■ Denote $\delta_{k}=\kappa_{p r}(o g)_{p r}$ with $g=\lambda,\left(g_{1,2,3,} Y_{f}\right)^{2}$

RG running of \mathscr{L}_{5} : Sketch of calculation

■ Denote renormalization of SM couplings collectively by

$$
\begin{align*}
& g_{0}=Z_{g} g \mu^{n_{g} \varepsilon}, n_{g}=\left\{\begin{array}{l}
2 \text { for } g=\lambda \\
1 \text { for gauge/Yukawa couplings }
\end{array}\right. \tag{8}\\
& \mu \frac{d g_{0}}{d \mu}=0 \Rightarrow \beta_{g}=-n_{g} \varepsilon g-\mu \frac{d \ln Z_{g}}{d \mu} g, \begin{array}{l}
\text { highest power } \varepsilon^{1}, \text { lowest order in } g \\
\text { highest power } \varepsilon^{0}, \text { higher order in } g
\end{array} \tag{9}
\end{align*}
$$

■ Consider eq.(7). The highest power in ε on Ihs is 0 , thus

$$
\begin{equation*}
\beta_{\kappa}=\mu \frac{d \kappa}{d \mu}=-2 \varepsilon \kappa+O\left(\varepsilon^{0}\right) \tag{10}
\end{equation*}
$$

This is as expected. It also has the following implications.
■ Denote $\delta \kappa=\kappa_{\rho r}(c g)_{p r}$ with $g=\lambda,\left(g_{1,2,3}, Y_{f}\right)^{2}$.

$$
\begin{align*}
& \mu \frac{d \delta \kappa}{d \mu}=\mu \frac{d \kappa_{p r}}{d \mu}(c g)_{p r}+\kappa_{p r} \mu \frac{d(c g)_{p r}}{d \mu}=\left[-2 \varepsilon \kappa_{p r}+O\left(\varepsilon^{0}\right)\right](c g)_{p r}+\kappa_{p r} \mu \frac{d(c g)_{p r}}{d \mu} \tag{11}\\
\Rightarrow & {\left[\mu \frac{d \delta \kappa}{d \mu}+2 \varepsilon \delta \kappa\right]_{\varepsilon^{0}}=\sum_{g}\left[\mu \frac{d g}{d \mu} \frac{d \delta \kappa}{d g}\right]_{\varepsilon^{0}}=\sum_{g}\left[-n_{g} \varepsilon g \frac{d \delta \kappa}{d g}\right]_{\varepsilon^{0}} } \tag{12}
\end{align*}
$$

RG running of \mathscr{L}_{5} : Sketch of calculation

- β functions have a well-defined limit as $\varepsilon \rightarrow 0$.

I'll not show cancellation of the pole terms in ε.

- Writing $A \approx 1+\frac{1}{2} \delta Z_{L}$ and $Z_{H}=1+\delta Z_{H}$, the result at one loop is

- The final result is

$$
(4 \pi)^{2} \beta_{K}=-\frac{3}{2}
$$

$$
+2 \operatorname{tr}\left(3 Y_{u}^{\dagger} Y_{u}+3 Y_{d}^{\dagger} Y_{d}+Y_{e}^{\dagger} Y_{e}\right) \kappa
$$

RG running of \mathscr{L}_{5} : Sketch of calculation

- β functions have a well-defined limit as $\varepsilon \rightarrow 0$.

I'll not show cancellation of the pole terms in ε.
\square Writing $A \approx 1+\frac{1}{2} \delta Z_{L}$ and $Z_{H}=1+\delta Z_{H}$, the result at one loop is

$$
\begin{align*}
& {\left[\mu \frac{d \ln Z_{H}}{d \mu} \kappa+\mu \frac{d A^{T}}{d \mu} \kappa+\kappa \mu \frac{d A}{d \mu}\right]_{\varepsilon^{0}}=\lim _{\varepsilon \rightarrow 0} \beta_{\kappa}+\sum_{g}\left[-n_{g} \varepsilon g \frac{d \delta \kappa}{d g}\right]_{\varepsilon^{0}} } \\
\Rightarrow & \lim _{\varepsilon \rightarrow 0} \beta_{\kappa}=\sum_{g}\left\{\left(-n_{g} \varepsilon g\right)\left[\frac{d \delta Z_{H}}{d g} \kappa-\frac{d \delta \kappa}{d g}+\frac{1}{2}\left(\frac{d \delta Z_{L}^{T}}{d g} \kappa+\kappa \frac{d \delta Z_{L}}{d g}\right)\right]\right\}_{\varepsilon^{0}} \tag{13}
\end{align*}
$$

■ The final result is
$(4 \pi)^{2} \beta_{K}=-\frac{3}{2}\left[\kappa\left(Y_{e} Y_{e}^{\top}\right)+\left(Y_{e} Y_{e}^{\top}\right)^{\top} \kappa\right]+2 \lambda \kappa-3 g_{2}^{2} \kappa$

RG running of \mathscr{L}_{5} : Sketch of calculation

- β functions have a well-defined limit as $\varepsilon \rightarrow 0$.

I'll not show cancellation of the pole terms in ε.
\square Writing $A \approx 1+\frac{1}{2} \delta Z_{L}$ and $Z_{H}=1+\delta Z_{H}$, the result at one loop is

$$
\begin{align*}
& {\left[\mu \frac{d \ln Z_{H}}{d \mu} \kappa+\mu \frac{d A^{T}}{d \mu} \kappa+\kappa \mu \frac{d A}{d \mu}\right]_{\varepsilon^{0}}=\lim _{\varepsilon \rightarrow 0} \beta_{\kappa}+\sum_{g}\left[-n_{g} \varepsilon g \frac{d \delta \kappa}{d g}\right]_{\varepsilon^{0}} } \\
\Rightarrow & \lim _{\varepsilon \rightarrow 0} \beta_{\kappa}=\sum_{g}\left\{\left(-n_{g} \varepsilon g\right)\left[\frac{d \delta Z_{H}}{d g} \kappa-\frac{d \delta \kappa}{d g}+\frac{1}{2}\left(\frac{d \delta Z_{L}^{T}}{d g} \kappa+\kappa \frac{d \delta Z_{L}}{d g}\right)\right]\right\}_{\varepsilon^{0}} \tag{13}
\end{align*}
$$

- The final result is

$$
\begin{align*}
(4 \pi)^{2} \beta_{\kappa}= & -\frac{3}{2}\left[\kappa\left(Y_{e} Y_{e}^{\dagger}\right)+\left(Y_{e} Y_{e}^{\dagger}\right)^{T} \kappa\right]+2 \lambda \kappa-3 g_{2}^{2} \kappa \\
& +2 \operatorname{tr}\left(3 Y_{u}^{\dagger} Y_{u}+3 Y_{d}^{\dagger} Y_{d}+Y_{e}^{\dagger} Y_{e}\right) \kappa \tag{14}
\end{align*}
$$

Outline

1 Lecture 5: SMEFT - Dimension-five and -seven Operators

2 Dim-5 operator

3 Dim-7 operators

4 Hilbert series: a powerful tool for counting operators

Basis of dim-7 operators

- Literature:
L. Lehman, Extending SMEFT with complete set of dim-7 operators, PRD 90 (2014) 125023
Y. Liao and X.-D. Ma, RGEn of dim-7 baryon- and lepton-number-violating operators, JHEP 11 (2016) 043
- It is important to use a basis of operators that is complete and independent -
- complete: consistency of perturbation theory, requirement of renormalizability in EFT
- Choices of bases are not unique but there are not many either. It depends usually on convenience.

Basis of dim-7 operators

- Literature:
L. Lehman, Extending SMEFT with complete set of dim-7 operators, PRD 90 (2014) 125023
Y. Liao and X.-D. Ma, RGEn of dim-7 baryon- and lepton-number-violating operators, JHEP 11 (2016) 043
- It is important to use a basis of operators that is complete and independent -
- complete: consistency of perturbation theory, requirement of renormalizability in EFT
- independent: correct connection with S matrix
- Both are required by making correct phenomenological conclusion
- Choices of bases are not unique but there are not many either. It depends usually on convenience.

Basis of dim-7 operators

- Literature:
L. Lehman, Extending SMEFT with complete set of dim-7 operators, PRD 90 (2014) 125023
Y. Liao and X.-D. Ma, RGEn of dim-7 baryon- and lepton-number-violating operators, JHEP

11 (2016) 043
■ It is important to use a basis of operators that is complete and independent -

- complete: consistency of perturbation theory, requirement of renormalizability in EFT
- independent: correct connection with S matrix
- Both are required by making correct phenomenological conclusion
- Choices of bases are not unique but there are not many either. It depends usually on convenience.

Basis of dim-7 operators

- It is a hard job to find a correct basis:

Completeness relatively easier, but redundancy difficult to remove. By redundant operators in $\mathscr{L}_{\text {EFT }}$ we mean those that can be removed by any of the following methods:
algebraic relations: for reps of Lorentz and gauge groups, including Fierz identities integration by parts: total derivative yields zero in perturbation theory equations of motion: equivalent to field redefinition without changing S matrix

- Most difficult is to make judicious use of algebraic identities. Nontrivial Fierz identities can be built upon Y. Liao and J. Y. Liu, Generalized Fierz Identities and Applications to Spin-3/2 Particles, Eur. Phys. J. Plus 127, 121 (2012) [arXiv:1206.5141 [hep-ph]]. non-contracted
J. F. Nieves and P. B. Pal, Generalized Fierz identities, Am. J. Phys. 72, 1100 (2004) [hep-ph/0306087]. involving charge-conjugation

Basis of dim-7 operators

- It is a hard job to find a correct basis:

Completeness relatively easier, but redundancy difficult to remove. By redundant operators in $\mathscr{L}_{\text {EFT }}$ we mean those that can be removed by any of the following methods:
algebraic relations: for reps of Lorentz and gauge groups, including Fierz identities integration by parts: total derivative yields zero in perturbation theory equations of motion: equivalent to field redefinition without changing S matrix

■ Most difficult is to make judicious use of algebraic identities. Nontrivial Fierz identities can be built upon Y. Liao and J. Y. Liu, Generalized Fierz Identities and Applications to Spin-3/2 Particles, Eur. Phys. J. Plus 127, 121 (2012) [arXiv:1206.5141 [hep-ph]]. non-contracted J. F. Nieves and P. B. Pal, Generalized Fierz identities, Am. J. Phys. 72, 1100 (2004) [hep-ph/0306087]. involving charge-conjugation

Algebraic relations

■ Relations for fundamental reps of gauge group:

$$
\begin{array}{ll}
S U(2) \quad & \left(T^{\prime}\right)_{j k}\left(T^{\prime}\right)_{m n}=\frac{1}{2} \delta_{j n} \delta_{m k}-\frac{1}{4} \delta_{j k} \delta_{m n}, T^{\prime}=\frac{1}{2} \sigma^{\prime} \text { (Pauli) } \\
& \text { Schouten identities }\left\{\begin{array}{l}
\varepsilon_{i j} \varepsilon_{m n}=\varepsilon_{i m} \varepsilon_{j n}-\varepsilon_{j m} \varepsilon_{i n}, \\
\varepsilon_{i j} \delta_{m n}=\varepsilon_{i m} \delta_{j n}-\varepsilon_{j m} \delta_{i n},
\end{array}\right. \\
S U(3) \quad\left(T^{A}\right)_{a b}\left(T^{A}\right)_{c d}=\frac{1}{2} \delta_{a d} \delta_{c b}-\frac{1}{6} \delta_{a b} \delta_{c d}, T^{A}=\frac{1}{2} \lambda^{A} \text { (Gell-Mann) }
\end{array}
$$

- Identities for fermion fields

Notation for charge conjugation of chiral fields:

All following identities are equally valid with $L \leftrightarrow R$.
Identities for fermion field bilinears involving charge conjugation:
\qquad

even
odd

Algebraic relations

■ Relations for fundamental reps of gauge group:

$$
\begin{array}{ll}
S U(2) \quad & \left(T^{\prime}\right)_{j k}\left(T^{\prime}\right)_{m n}=\frac{1}{2} \delta_{j n} \delta_{m k}-\frac{1}{4} \delta_{j k} \delta_{m n}, T^{\prime}=\frac{1}{2} \sigma^{\prime} \text { (Pauli) } \\
& \text { Schouten identities }\left\{\begin{array}{l}
\varepsilon_{i j} \varepsilon_{m n}=\varepsilon_{i m} \varepsilon_{j n}-\varepsilon_{j m} \varepsilon_{i n}, \\
\varepsilon_{i j} \delta_{m n}=\varepsilon_{i m} \delta_{j n}-\varepsilon_{j m} \delta_{i n},
\end{array}\right. \\
S U(3) \quad\left(T^{A}\right)_{a b}\left(T^{A}\right)_{c d}=\frac{1}{2} \delta_{a d} \delta_{c b}-\frac{1}{6} \delta_{a b} \delta_{c d}, T^{A}=\frac{1}{2} \lambda^{A} \text { (Gell-Mann) }
\end{array}
$$

- Identities for fermion fields

Notation for charge conjugation of chiral fields:

$$
\begin{equation*}
\Psi_{L, R}^{C} \equiv\left(\Psi_{L, R}\right)^{C} \Rightarrow \overline{\Psi_{L, R}^{C}}=\left(\Psi_{L, R}\right)^{T} C, \Psi_{L, R}=\left(\Psi_{L, R}^{C}\right)^{C} \tag{18}
\end{equation*}
$$

All following identities are equally valid with $L \leftrightarrow R$. Identities for fermion field bilinears involving charge conjugation:

$$
\overline{\Psi_{1 L}} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \cdots \gamma^{\mu_{n-1}} \gamma^{\mu_{n}} \Psi_{2 R}= \pm \overline{\Psi_{2 R}^{C}} \gamma^{\mu_{n}} \gamma^{\mu_{n}-1} \cdots \gamma^{\mu_{2}} \gamma^{\mu_{1}} \Psi_{1 L}^{C} \text { for } n\left\{\begin{array}{l}
\text { even } \tag{19}\\
\text { odd }
\end{array}\right.
$$

Algebraic relations

$$
\begin{align*}
\left(\overline{\Psi_{1 L}} \gamma^{\mu} \gamma^{v} \Psi_{2 R}\right)\left(\overline{\Psi_{3 L}} \gamma_{\mu} \gamma_{\nu} \Psi_{4 R}\right) & =8\left[\left(\overline{\Psi_{1 L}} \Psi_{2 R}\right)\left(\overline{\Psi_{3 L}} \Psi_{4 R}\right)+\left(\overline{\Psi_{1 L}} \Psi_{4 R}\right)\left(\overline{\Psi_{3 L}} \Psi_{2 R}\right)\right], \tag{20}\\
\left(\overline{\Psi_{1 L}} \gamma^{\mu} \gamma^{v} \Psi_{2 R}\right)\left(\overline{\Psi_{3 L}} \gamma_{v} \gamma_{\mu} \Psi_{4 R}\right) & =-8\left(\overline{\Psi_{1 L}} \Psi_{4 R}\right)\left(\overline{\Psi_{3 L}} \Psi_{2 R}\right) \tag{21}\\
\left(\overline{\Psi_{1 L}} \gamma^{\mu} \gamma^{v} \Psi_{2 R}\right)\left(\overline{\Psi_{3 R}} \gamma_{\mu} \gamma_{\nu} \Psi_{4 L}\right) & =4\left(\overline{\Psi_{1 L}} \Psi_{2 R}\right)\left(\overline{\Psi_{3 R}} \Psi_{4 L}\right) \tag{22}\\
\left(\overline{\Psi_{1 L}} \gamma^{\mu} \gamma^{v} \Psi_{2 R}\right)\left(\overline{\Psi_{3 R}} \gamma_{\nu} \gamma_{\mu} \Psi_{4 L}\right) & =4\left(\overline{\Psi_{1 L}} \Psi_{2 R}\right)\left(\overline{\Psi_{3 R}} \Psi_{4 L}\right) \tag{23}\\
\left(\overline{\Psi_{1 L}} \gamma^{\mu} \Psi_{2 L}\right)\left(\overline{\Psi_{3 L}} \gamma_{\mu} \Psi_{4 L}\right) & =\left(\overline{\Psi_{1 L}} \gamma^{\mu} \Psi_{4 L}\right)\left(\overline{\Psi_{3 L}} \gamma_{\mu} \Psi_{2 L}\right), \tag{24}\\
\left(\overline{\Psi_{1 L}} \gamma^{\mu} \Psi_{2 L}\right)\left(\overline{\Psi_{3 L}} \gamma_{\mu} \Psi_{4 L}\right) & =2\left(\overline{\Psi_{1 L}} \Psi_{3 L}^{C}\right)\left(\overline{\Psi_{4 L}^{C}} \Psi_{2 L}\right), \tag{25}\\
\left(\overline{\Psi_{1 L}} \gamma^{\mu} \Psi_{2 L}\right)\left(\overline{\Psi_{3 R}} \gamma_{\mu} \Psi_{4 R}\right) & =-2\left(\overline{\Psi_{1 L}} \Psi_{4 R}\right)\left(\overline{\Psi_{3 R}} \Psi_{2 L}\right) \tag{26}\\
\left(\overline{\Psi_{1 L}} \gamma^{\mu} \Psi_{2 L}\right)\left(\overline{\Psi_{3 R}^{C}} \Psi_{4 R}\right) & =\left(\overline{\Psi_{1 L}} \Psi_{3 R}\right)\left(\overline{\Psi_{2 L}^{C}} \gamma_{\mu} \Psi_{4 R}\right)+\left(\overline{\Psi_{1 L}} \Psi_{4 R}\right)\left(\overline{\Psi_{2 L}^{C}} \gamma_{\mu} \Psi_{3 R}\right) \tag{27}\\
\left(\overline{\Psi_{1 L}} \Psi_{2 R}\right)\left(\overline{\Psi_{3 L}^{C}} \gamma^{\mu} \Psi_{4 R}\right) & =\left(\overline{\Psi_{1 L}} \gamma_{\mu} \Psi_{3 L}\right)\left(\overline{\Psi_{4 R}^{C}} \Psi_{2 R}\right)-\left(\overline{\Psi_{1 L}} \Psi_{4 R}\right)\left(\overline{\Psi_{3 L}^{C}} \gamma_{\mu} \Psi_{2 R}\right) \tag{28}\\
\left(\overline{\Psi_{1 R}} \gamma^{\mu} \Psi_{2 R}\right)\left(\overline{\Psi_{3 R}^{C}} \Psi_{4 R}\right) & =-\left(\overline{\Psi_{1 R}} \gamma_{\mu} \Psi_{3 R}\right)\left(\overline{\Psi_{2 R}^{C}} \Psi_{4 R}\right)-\left(\overline{\Psi_{1 R}} \gamma_{\mu} \Psi_{4 R}\right)\left(\overline{\Psi_{2 R}^{C}} \Psi_{3}\right) \\
\left(\overline{\Psi_{1 L}} \Psi_{2 R}\right)\left(\overline{\Psi_{3 R}^{C}} \Psi_{4 R}\right) & \left.=-\left(\overline{\Psi_{1 L}} \Psi_{3 R}\right) \overline{\Psi_{4 R}^{C}} \Psi_{2 R}\right)-\left(\overline{\Psi_{1 L}} \Psi_{4 R}\right)\left(\overline{\Psi_{3 R}^{C}} \Psi_{2 R}\right) \tag{30}
\end{align*}
$$

EoMs

Gauge fields:

$$
\begin{align*}
& D^{\nu} G_{\mu \nu}^{A}=g_{3} \sum_{\psi=Q, u, d} \bar{\Psi} T^{A} \gamma_{\mu} \Psi, \\
& D^{v} W_{\mu \nu}^{\prime}=g_{2} \sum_{\psi=Q, L} \bar{\Psi} T^{\prime} \gamma_{\mu} \Psi+i g_{2} H^{\star} T^{\prime} \overleftrightarrow{D}_{\mu} H, \\
& D^{v} B_{\mu \nu}=g_{1} \sum_{\psi=q, u, d, L, e} \bar{\psi} Y_{\psi} \gamma_{\mu} \Psi+i g_{1} Y_{H} H^{\dagger} \overleftrightarrow{D}_{\mu} H . \tag{31}
\end{align*}
$$

Matter and Higgs fields:

$$
\begin{align*}
D^{2} H & =\mu^{2} H-\lambda\left(H^{\dagger} H\right) H-\varepsilon^{\top} \bar{Q} Y_{u} u-\bar{d} Y_{d}^{\dagger} Q-\bar{e} Y_{e}^{\dagger} L, \\
i D Q & =Y_{u} u \tilde{H}+Y_{d} d H, \\
i D L & =Y_{e} e H, \\
i D u & =Y_{\dot{u}}^{\dagger} \tilde{H}^{\dagger} Q, \\
i D d & =Y_{d}^{\dagger} H^{\dagger} Q, \\
i D e & =Y_{e}^{\dagger} H^{\dagger} L . \tag{32}
\end{align*}
$$

Most useful for reducing dim-7 operators are, in explicit indices,

$$
\begin{equation*}
i \gamma^{\mu} D_{\mu} L_{t}^{i}=\left(Y_{e}\right)_{t u} e_{u} H^{i}, \tag{33}
\end{equation*}
$$

Summary of dim-7 operators

redundant operators

$\mathscr{O}_{\bar{d} u L L D}^{(2)}$	$\varepsilon_{i j}\left(\bar{d} \gamma_{\mu} u\right)\left(L^{i} C \sigma^{\mu v} D_{v} L^{j}\right)$	$\mathscr{O}_{\bar{L} d Q d D}$	$\left(\overline{L i} D^{\mu} d\right)\left(Q C \gamma_{\mu} d\right)$

Summary of dim-7 operators

Comments:
■ Not count flavors and Hermitian conjugates:
12 ($\leftarrow 13) B$-conserving $+6(\leftarrow 7) B$-violating operators; but $\varepsilon_{i j}\left(\bar{e} Q^{i}\right)(d C d) \tilde{H}^{j}$ and $(\bar{L} d)(d C d) H$ vanish for one generation.

- Last two operators are redundant.

■ \mathscr{L}_{7} : Operators to be multiplied by Wilson coeff. containing flavor indices.
Features:
■ All dim-7 operators involve leptons and violate lepton number.
■ Most involve H except for three. Rare processes challenging to detect.
■ Unique dim-7 operator $O_{L H}$ for neutrino mass. Actually unique to all dimensions: $\mathscr{0}_{5}\left(H^{\dagger} H\right)^{n}$ Liao (2010).

Summary of dim-7 operators

Comments:

- Not count flavors and Hermitian conjugates:

12 ($\leftarrow 13) B$-conserving $+6(\leftarrow 7) B$-violating operators; but $\varepsilon_{i j}\left(\bar{e} Q^{i}\right)(d C d) \tilde{H}^{j}$ and $(\bar{L} d)(d C d) H$ vanish for one generation.
■ Last two operators are redundant.
■ \mathscr{L}_{7} : Operators to be multiplied by Wilson coeff. containing flavor indices.
Features:
■ All dim-7 operators involve leptons and violate lepton number.
■ Most involve H except for three. Rare processes challenging to detect.
■ Unique dim-7 operator $O_{L H}$ for neutrino mass. Actually unique to all dimensions: $\mathscr{0}_{5}\left(H^{\dagger} H\right)^{n}$ Liao (2010).

Summary of dim-7 operators

Comments:
■ Not count flavors and Hermitian conjugates:
12 ($\leftarrow 13) B$-conserving $+6(\leftarrow 7) B$-violating operators; but $\varepsilon_{i j}\left(\bar{e} Q^{i}\right)(d C d) \tilde{H}^{i}$ and $(\bar{L} d)(d C d) H$ vanish for one generation.
■ Last two operators are redundant.

- \mathscr{L}_{7} : Operators to be multiplied by Wilson coeff. containing flavor indices.

Features:
■ All dim-7 operators involve leptons and violate lepton number.
■ Most involve H except for three. Rare processes challenging to detect.
■ Unique dim-7 operator $O_{L H}$ for neutrino mass. Actually unique to all dimensions: $\mathscr{O}_{5}\left(H^{\dagger} H\right)^{n}$ Liao (2010).

Summary of dim-7 operators

Comments:
■ Not count flavors and Hermitian conjugates:
12 ($\leftarrow 13) B$-conserving $+6(\leftarrow 7) B$-violating operators;
but $\varepsilon_{i j}\left(\bar{e} Q^{i}\right)(d C d) \tilde{H}^{i}$ and $(\bar{L} d)(d C d) H$ vanish for one generation.
■ Last two operators are redundant.

- \mathscr{L}_{7} : Operators to be multiplied by Wilson coeff. containing flavor indices.

Features:

- All dim-7 operators involve leptons and violate lepton number.

■ Most involve H except for three. Rare processes challenging to detect.
■ Unique dim-7 operator $O_{L H}$ for neutrino mass. Actually unique to all dimensions: $\mathscr{O}_{5}\left(H^{\dagger} H\right)^{n}$ Liao (2010).

Summary of dim-7 operators

Comments:
■ Not count flavors and Hermitian conjugates:
12 ($\leftarrow 13) B$-conserving $+6(\leftarrow 7) B$-violating operators;
but $\varepsilon_{i j}\left(\bar{e} Q^{i}\right)(d C d) \tilde{H}^{i}$ and $(\bar{L} d)(d C d) H$ vanish for one generation.
■ Last two operators are redundant.

- \mathscr{L}_{7} : Operators to be multiplied by Wilson coeff. containing flavor indices.

Features:
■ All dim-7 operators involve leptons and violate lepton number.
\square Most involve H except for three. Rare processes challenging to detect.
■ Unique dim-7 operator $O_{L H}$ for neutrino mass. Actually unique to all dimensions: $\mathscr{O}_{5}\left(H^{\dagger} H\right)^{n}$ Liao (2010).

Summary of dim-7 operators

Comments:
■ Not count flavors and Hermitian conjugates:
12 ($\leftarrow 13) B$-conserving $+6(\leftarrow 7) B$-violating operators;
but $\varepsilon_{i j}\left(\bar{e} Q^{i}\right)(d C d) \tilde{H}^{i}$ and $(\bar{L} d)(d C d) H$ vanish for one generation.
■ Last two operators are redundant.

- \mathscr{L}_{7} : Operators to be multiplied by Wilson coeff. containing flavor indices.

Features:
■ All dim-7 operators involve leptons and violate lepton number.
■ Most involve H except for three. Rare processes challenging to detect.
■ Unique dim-7 operator $\mathscr{O}_{L H}$ for neutrino mass. Actually unique to all dimensions: $\mathscr{O}_{5}\left(H^{\dagger} H\right)^{n}$ Liao (2010).

Demonstration of operator reduction by easy examples

Example 1

A seemingly independent operator is

$$
\begin{array}{ll}
& \varepsilon_{i j}\left(L^{i} C \gamma_{\mu} e\right)\left(\bar{d} \gamma^{\mu} u\right) H^{j}=\varepsilon_{i j}\left(\overline{L_{i}^{C}} \gamma_{\mu} e\right)\left(\bar{d} \gamma^{\mu} u\right) H^{j} \\
\stackrel{(25)}{=} & 2 \varepsilon_{i j}\left(\bar{d} L_{i}\right)\left(\overline{u^{c}} e\right)=2 \varepsilon_{i j}\left(\bar{d} L^{i}\right)(u C e) H^{j}=2 \sigma_{\bar{a} L u e H} . \tag{35}
\end{array}
$$

Example 2
Redundancy of $\sigma_{\overline{d u L L D}}^{(2) \text { prst }: ~}$

$$
\begin{align*}
\mathscr{O}_{\overline{d u L L D}}^{(2) p \text { pt }} & =\varepsilon_{i j}\left(\bar{d}_{p} \gamma_{\mu} u_{r}\right)\left(L_{s}^{i} C \sigma^{\mu v} D_{v} L_{t}^{j}\right) \quad \sigma^{\mu v}=i \gamma^{\mu} \gamma^{v}-i g^{\mu v} \\
& =\varepsilon_{i j}\left(\bar{d}_{p} \gamma_{\mu} u_{r}\right)\left(L_{s}^{i} C \gamma^{\mu} \gamma^{v} i D_{v} L_{t}^{j}\right)-\varepsilon_{i j}\left(\bar{d}_{p} \gamma_{\mu} u_{r}\right)\left(L_{s}^{i} C i D^{\mu} L_{t}^{j}\right) \\
& \stackrel{(33)}{=}\left(Y_{e}\right)_{t u} \varepsilon_{i j}\left(\bar{d}_{p} \gamma_{\mu} u_{r}\right)\left(L_{s}^{i} C \gamma^{\mu} e_{u}\right) H^{j}-\overparen{\sigma}_{\overline{d u L L D}}^{\text {prs }} \\
& \stackrel{(35)}{=} 2\left(Y_{e}\right)_{t u} \ddots_{\overline{d L u e H}}^{\text {pru }}-\sigma_{d u L L D}^{p p s t} \tag{36}
\end{align*}
$$

RGEs for 6 operators with $s=-L=1$

They are closed under 1-loop renormalization since other 12 operators have $B=0, L=-1$.

$$
\begin{equation*}
\mathscr{L}_{7}=\sum_{i} c_{i} \mathscr{O}_{i}+\text { h.c. } \tag{37}
\end{equation*}
$$

where we use shortcuts for 6 operators and Wilson coefficients:

$$
\begin{align*}
& C_{1} \equiv C_{\overline{L d u d U H}}^{\text {prst }} \quad \mathscr{O}_{1} \equiv \mathscr{O}_{\overline{L d u d H}}^{\text {prst }}=\varepsilon_{\alpha \beta \sigma} \varepsilon_{i j}\left(\bar{L}_{i p} d_{\alpha r}\right)\left(u_{\beta s} C d_{\sigma t}\right) H_{j}^{*}, \\
& C_{2} \equiv C_{\bar{L} d d d H}^{\text {prst }} \quad \mathscr{O}_{2} \equiv \mathscr{O}_{\bar{L} d d d H}^{\text {prst }}=\varepsilon_{\alpha \beta \sigma} \delta_{i j}\left(\bar{L}_{i p} d_{\alpha r}\right)\left(d_{\beta s} C d_{\sigma t}\right) H_{j}, \\
& C_{3} \equiv C_{\bar{e} Q d d \tilde{H}}^{p r s t} \quad \mathscr{O}_{3} \equiv \mathscr{O}_{\bar{e} Q d d \tilde{H}}^{p r s t}=-\varepsilon_{\alpha \beta \sigma} \delta_{i j}\left(\bar{e}_{p} Q_{i \alpha r}\right)\left(d_{\beta s} C d_{\sigma t}\right) H_{j}^{*}, \\
& C_{4} \equiv C_{\bar{L} d Q Q \tilde{H}}^{p r s t} \quad \mathscr{O}_{4} \equiv \mathscr{O}_{\bar{L} d Q Q \tilde{H}}^{p r s t}=-\varepsilon_{\alpha \beta \sigma} \delta_{k l} \delta_{i j}\left(\bar{L}_{k p} d_{\alpha r}\right)\left(Q_{\mid \beta s} C Q_{i \sigma t}\right) H_{j}^{*}, \\
& C_{5} \equiv C_{\overline{L Q d d D}}^{\text {prst }} \quad \mathscr{O}_{5} \equiv \mathscr{O}_{\bar{L} Q d d D}^{\text {prst }}=\varepsilon_{\alpha \beta \sigma} \delta_{i j}\left(\bar{L}_{i p} \gamma_{\mu} Q_{j \alpha r}\right)\left(d_{\beta s} C_{i} D_{\sigma \rho}^{\mu} d_{\rho t}\right), \\
& C_{6} \equiv C_{\bar{e} d d d D}^{p r s t} \quad \mathscr{O}_{6} \equiv \mathscr{O}_{\bar{e} d d d D}^{\text {prst }}=\varepsilon_{\alpha \beta \sigma}\left(\bar{e}_{p} \gamma_{\mu} d_{\alpha r}\right)\left(d_{\beta s} C i D_{\sigma \rho}^{\mu} d_{\rho t}\right) . \tag{38}
\end{align*}
$$

We study one-loop RGE of $6 B$-violating operators:

$$
\begin{equation*}
\dot{C}_{i} \equiv 16 \pi^{2} \mu \frac{d C_{i}}{d \mu}=\sum_{j=1}^{6} \gamma_{i j} C_{j} \tag{39}
\end{equation*}
$$

RGEs for 6 operators with $B=-L=1$

dimensional regularization, MS general $R_{\xi_{1,2,3}}$ gauge representative graphs:

(B)

(H1)

(W)

(H2)

(G)

(H3)

RGEs for 6 operators with $B=-L=1$

We get

$$
\begin{aligned}
\dot{C}_{1}^{p r s t}= & +\left(-4 g_{3}^{2}-\frac{9}{4} g_{2}^{2}-\frac{17}{12} g_{1}^{2}+W_{H}\right) C_{1}^{p r s t}-\frac{10}{3} g_{1}^{2} C_{1}^{p t s r}-\frac{3}{2}\left(Y_{e} Y_{e}^{\dagger}\right) p v C_{1}^{v r s t} \\
& +3\left(Y_{d}^{\dagger} Y_{d}\right)_{v r} C_{1}^{p v s t}+3\left(Y_{d}^{\dagger} Y_{d}\right)_{v t} C_{1}^{p r s v}+2\left(Y_{u}^{\dagger} Y_{u}\right)_{v s} C_{1}^{p r v t}-2\left(Y_{d}^{\dagger} Y_{u}\right)_{v s}\left(c_{2}^{p v r t}+v \leftrightarrow r\right) \\
& +4\left(Y_{e}\right)_{p v}\left(Y_{u}\right)_{w s} C_{3}^{v w r t}-2\left(\left(Y_{u}\right)_{v s}\left(Y_{d}\right)_{w t}+s \leftrightarrow t\right) C_{4}^{p r v w}-\frac{1}{6}\left(11 g_{1}^{2}+24 g_{3}^{2}\right)\left(Y_{u}\right)_{v s} C_{5}^{p v r t} \\
& +\frac{1}{6}\left(13 g_{1}^{2}+48 g_{3}^{2}\right)\left(Y_{u}\right)_{v s} C_{5}^{p v t r}-\frac{3}{2}\left(Y_{d}\right)_{v t}\left(Y_{d}^{\dagger} Y_{u}\right)_{w s} C_{5}^{p v r w} \\
& -3\left(Y_{u}\right)_{v s}\left(\left(Y_{d}^{\dagger} Y_{d}\right)_{w t} C_{5}^{p v r w}-r \leftrightarrow t\right)+\frac{3}{2}\left(Y_{e}\right)_{p v}\left(Y_{d}^{\dagger} Y_{u}\right)_{w s} C_{6}^{v r t w}, \\
\dot{C}_{2}^{p r s t}=\quad & +\left(-4 g_{3}^{2}-\frac{9}{4} g_{2}^{2}-\frac{13}{12} g_{1}^{2}+W_{H}\right) C_{2}^{p r s t}+\frac{5}{2}\left(Y_{e} Y_{e}^{\dagger}\right)_{p v} C_{2}^{v r s t} \\
& +2\left(\left(Y_{d}^{\dagger} Y_{d}\right)_{v r} C_{2}^{p v s t}+\left(Y_{d}^{\dagger} Y_{d}\right)_{v s} C_{2}^{p r v t}+\left(Y_{d}^{\dagger} Y_{d}\right)_{v t} C_{2}^{p r s v}\right) \\
& -\frac{1}{4}\left[\left(\left(Y_{u}^{\dagger} Y_{d}\right)_{v s} C_{1}^{p r v t}+\left(Y_{u}^{\dagger} Y_{d}\right) v r C_{1}^{p s v t}+\left(Y_{u}^{\dagger} Y_{d}\right)_{v s} C_{1}^{p t v r}\right)-s \leftrightarrow t\right] \\
& +\left\{\left[\left(\frac{1}{3}\left(g_{1}^{2}-6 g_{3}^{2}\right)\left(Y_{d}\right) v r C_{5}^{p v s t}-\frac{1}{4} g_{1}^{2}\left(Y_{d}\right)_{v s} C_{5}^{p v r t}-\frac{3}{4}\left(Y_{d}\right)_{v r}\left(Y_{d}^{\dagger} Y_{d}\right)_{w t} C_{5}^{p v s w}\right)+r \leftrightarrow t\right]-s \leftrightarrow t\right\} \\
& +\frac{1}{2}\left(Y_{e}\right)_{p v}\left\{\left[g_{1}^{2}\left(C_{6}^{v r s t}+r \leftrightarrow s\right)+\frac{3}{4}\left(\left(Y_{d}^{\dagger} Y_{d}\right)_{w t}\left(C_{6}^{v r s w}+r \leftrightarrow s\right)+\left(Y_{d}^{\dagger} Y_{d}\right)_{w r} C_{6}^{v t s w}\right)\right]-s \leftrightarrow t\right\}
\end{aligned}
$$

RGEs for 6 operators with $B=-L=1$

$$
\begin{aligned}
\dot{C}_{3}^{p r s t}= & +\left(-4 g_{3}^{2}-\frac{9}{4} g_{2}^{2}+\frac{11}{12} g_{1}^{2}+w_{H}\right) C_{3}^{p r s t} \\
& +\left[\left(\left(Y_{e}^{\dagger} Y_{e}\right)_{p v} C_{3}^{v r s t}+\frac{5}{4}\left(Y_{u} Y_{u}^{\dagger}+Y_{d} Y_{d}^{\dagger}\right) v r C_{3}^{p v s t}+3\left(Y_{d}^{\dagger} Y_{d}\right)_{v s} C_{3}^{p r v t}-\left(Y_{d}^{\dagger}\right) w r\left(Y_{d}\right) v s C_{3}^{p v w t}\right)-s \leftrightarrow t\right] \\
& -\frac{1}{2}\left(Y_{e}^{\dagger}\right)_{p v}\left[\left(\left(Y_{u}^{\dagger}\right)_{w r} C_{1}^{v t w s}+2\left(Y_{d}\right) w s C_{4}^{v t w r}+\left(Y_{d}\right)_{w t} C_{4}^{v s r w}+3 g_{1}^{2} C_{5}^{v r s t}+3\left(Y_{d}^{\dagger} Y_{d}\right)_{w t} C_{5}^{v r s w}\right)-s \leftrightarrow t\right] \\
& +\frac{1}{4}\left(g_{1}^{2}+12 g_{3}^{2}\right)\left(Y_{d}^{\dagger}\right)_{v r}\left[\left(C_{6}^{p v s t}+C_{6}^{p s v t}+C_{6}^{p s t v}\right)-s \leftrightarrow t\right] \\
& -\frac{3}{4}\left\{\left[\left(Y_{d}^{\dagger} Y_{d}\right) v s\left(Y_{d}^{\dagger}\right) w r\left(C_{6}^{p t v w}-r \leftrightarrow v\right)+\left(Y_{d}^{\dagger} Y_{d}\right) w s\left(Y_{d}^{\dagger}\right) v r\left(C_{6}^{p t v w}+2 C_{6}^{p v t w}\right)\right]-s \leftrightarrow t\right\}, \\
= & +\left(-4 g_{3}^{2}-\frac{15}{4} g_{2}^{2}-\frac{19}{12} g_{1}^{2}+W_{H}\right) C_{4}^{p r s t}-3 g_{2}^{2} C_{4}^{p r t s}+3\left(Y_{d}^{\dagger} Y_{d}\right)_{v r} C_{4}^{p v s t} \\
& -\frac{1}{2}\left(Y_{e} Y_{e}^{\dagger}\right) p v\left(4 C_{4}^{v r t s}-C_{4}^{\text {vrst }}\right)+\left(2\left(Y_{u} Y_{u}^{\dagger}\right)_{v t}-\left(Y_{d} Y_{d}^{\dagger}\right) v t\right) C_{4}^{p r v s} \\
& +\frac{1}{2}\left(5\left(Y_{u} Y_{u}^{\dagger}\right)_{v s}+\left(Y_{d} Y_{d}^{\dagger}\right) v s\right) C_{4}^{p r v t}+\frac{1}{2}\left(5\left(Y_{d} Y_{d}^{\dagger}\right)_{v t}-3\left(Y_{u} Y_{u}^{\dagger}\right)_{v t}\right) C_{4}^{p r s v} \\
& -\left(Y_{d}\right)_{w r}\left(\left(Y_{d}^{\dagger}\right) v s C_{4}^{p v w t}+\left(Y_{d}^{\dagger}\right) v C_{4}^{p v w}\right)-\left(\left(Y_{u}^{\dagger}\right)_{v s}\left(Y_{d}^{\dagger}\right)_{w t}\left(2 C_{1}^{p r v w}+C_{1}^{p w v r}\right)+s \leftrightarrow t\right) \\
& -2\left(Y_{e}\right)_{p v}\left(Y_{d}^{\dagger}\right) w s C_{3}^{v t w r}-\frac{1}{6}\left(g_{1}^{2}-24 g_{3}^{2}\right)\left(Y_{d}^{\dagger}\right) v t\left(C_{5}^{p s v r}+r \leftrightarrow v\right)-\frac{3}{2}\left(Y_{e} Y_{e}^{\dagger}\right) p v\left(Y_{d}^{\dagger}\right) w s C_{5}^{v t r w} \\
& +\frac{3}{2}\left(Y_{d}^{\dagger} Y_{d}\right)_{v r}\left(Y_{d}^{\dagger}\right)_{w t}\left(C_{5}^{p s v w}+v \leftrightarrow w\right)+\frac{3}{2}\left(\left(Y_{u} Y_{u}^{\dagger}\right) v s\left(Y_{d}^{\dagger}\right)_{w t}+s \leftrightarrow t\right) C_{5}^{p v r w} \\
& +\frac{3}{2}\left(Y_{e}\right)_{p v}\left(Y_{d}^{\dagger}\right) w s\left(Y_{d}^{\dagger}\right) x t\left(C_{6}^{v x r w}+C_{6}^{v r w x}+C_{6}^{v r x w}\right),
\end{aligned}
$$

RGEs for 6 operators with $B=-L=1$

$$
\begin{aligned}
& \dot{C}_{5}^{\text {prst }}=\quad+\left(\frac{5}{9} g_{1}^{2}-\frac{4}{3} g_{3}^{2}\right) C_{5}^{\text {prst }}-\left(\frac{1}{9} g_{1}^{2}-\frac{8}{3} g_{3}^{2}\right) C_{5}^{\text {prts }}+\frac{1}{2}\left(Y_{e} Y_{e}^{\dagger}\right)_{p v} C_{5}^{v r s t}+\frac{1}{2}\left(Y_{u} Y_{U}^{\dagger}+Y_{d} Y_{d}^{\dagger}\right) v r C_{5}^{\text {prst }} \\
& +\left(Y_{d}^{\dagger} Y_{d}\right)_{v s} C_{5}^{p r v t}+\left(Y_{d}^{\dagger} Y_{d}\right)_{v t} C_{5}^{p r s v}-\left(Y_{d}^{\dagger}\right) w r\left(\left(Y_{d}\right)_{v s} C_{5}^{p v w t}+\left(Y_{d}\right)_{v t} C_{5}^{p v s w}\right) \\
& -\left(Y_{e}\right)_{p v}\left(Y_{d}^{\dagger}\right)_{w r}\left(C_{6}^{v w s t}+C_{6}^{v s w t}+C_{6}^{v s t w}\right) \text {, } \\
& \dot{C}_{6}^{\text {prst }}=-\left(\frac{4}{27} g_{1}^{2}+\frac{8}{3} g_{3}^{2}\right) C_{6}^{\text {prst }}-\left(\frac{2}{9} g_{1}^{2}-\frac{4}{3} g_{3}^{2}\right)\left(C_{6}^{\text {prts }}+C_{6}^{\text {psrt }}+C_{6}^{\text {pstr }}+C_{6}^{\text {prrs }}+C_{6}^{\text {ptsr }}\right) \\
& \left.+\left(Y_{e}^{\dagger} Y_{e}\right) p v C_{6}^{v r s t}+\left(Y_{d}^{\dagger} Y_{d}\right)\right)_{v r} C_{6}^{p v s t}+\left(Y_{d}^{\dagger} Y_{d}\right)_{v s} C_{6}^{p r v t}+\left(Y_{d}^{\dagger} Y_{d}\right)_{v t} c_{6}^{p r s v}{ }_{-2\left(Y_{e}^{\dagger}\right) p v\left(Y_{d}\right) w r} C_{5}^{v w s t}
\end{aligned}
$$

where

$$
w_{H}=\operatorname{Tr}\left(3 Y_{u}^{\dagger} Y_{u}+3 Y_{d}^{\dagger} Y_{d}+Y_{e}^{\dagger} Y_{e}\right)
$$

Phenomenological implications: an illustration

$B=-L=1$: rare nucleon decays, e.g., $p \rightarrow v \pi^{+}\left(v K^{+}, e^{-} \pi^{+} \pi^{+}\right), n \rightarrow e^{-} \pi^{+}, \ldots$ Not attempt a complete analysis, which requires a sequence of EFT from electroweak scale to nucleon mass scale.

But illustrate potential impact of RGE.
Low energy: $H \rightarrow v / \sqrt{2}, D \rightarrow 0$, only $\mathscr{G}_{L d u d H}^{p p 111}, \mathscr{G}_{\text {LdQQH }}^{p 111}$ relevant.

Phenomenological implications: an illustration

Ignore quark mixing, drop all Yukawa couplings except for the top.
RGEs are decoupled ($\left.\alpha_{i}=g_{i}^{2} /(4 \pi)(i=1,2,3), \alpha_{t}=Y_{t}^{2} /(4 \pi)\right)$:

$$
\begin{align*}
\mu \frac{d}{d \mu} C_{\bar{L} d u d \tilde{H}}^{p 111} & =\frac{1}{4 \pi}\left(-4 \alpha_{3}-\frac{9}{4} \alpha_{2}-\frac{57}{12} \alpha_{1}+3 \alpha_{t}\right) C_{\overline{L d u d \tilde{H}}}^{p 111} \tag{40}\\
\mu \frac{d}{d \mu} C_{\bar{L} d Q Q \tilde{H}}^{p 111} & =\frac{1}{4 \pi}\left(-4 \alpha_{3}-\frac{27}{4} \alpha_{2}-\frac{19}{12} \alpha_{1}+3 \alpha_{t}\right) C_{\tilde{L} d Q Q \tilde{H}}^{p 111} \tag{41}
\end{align*}
$$

From $M \sim 10^{15} \mathrm{GeV}$ (GUT) to $\mu \sim m_{p} \sim 1 \mathrm{GeV}$:

$$
\begin{align*}
& C_{\overline{L d u d} \tilde{H}}^{p 111}\left(m_{p}\right)=\left[\frac{\alpha_{3}\left(m_{p}\right)}{\alpha_{3}(M)}\right]^{2 / \beta_{3}}\left[\frac{\alpha_{2}\left(M_{z}\right)}{\alpha_{2}(M)}\right]^{9 /\left(8 \beta_{2}\right)}\left[\frac{\alpha_{1}\left(M_{z}\right)}{\alpha_{1}(M)}\right]^{57 /\left(24 \beta_{1}\right)}(0.787) C_{\tilde{L} d u d \tilde{H}}^{p 111}(M) \tag{42}\\
& C_{\tilde{L} d Q Q \tilde{H}}^{p 111}\left(m_{p}\right)=\left[\frac{\alpha_{3}\left(m_{p}\right)}{\alpha_{3}(M)}\right]^{2 / \beta_{3}}\left[\frac{\alpha_{2}\left(M_{Z}\right)}{\alpha_{2}(M)}\right]^{27 /\left(8 \beta_{2}\right)}\left[\frac{\alpha_{1}\left(M_{z}\right)}{\alpha_{1}(M)}\right]^{19 /\left(24 \beta_{1}\right)}(0.787) C_{\bar{L} d Q Q \tilde{H}}^{p 11}(M)(43) \tag{43}
\end{align*}
$$

Phenomenological implications: an illustration

$$
\begin{gathered}
\beta_{3}=7, \quad \beta_{2}=\frac{19}{6}, \quad \beta_{1}=-\frac{41}{10} \\
\alpha_{1}\left(M_{Z}\right)=0.0169225 \pm 0.0000039, \quad \alpha_{2}\left(M_{Z}\right)=0.033735 \pm 0.000020, \\
\alpha_{3}\left(M_{Z}\right)=0.1173 \pm 0.00069, \quad \alpha_{t}\left(M_{Z}\right)=0.07514 \\
\Rightarrow \quad \\
C_{\bar{L} d u d \tilde{H}}^{p 111}\left(m_{p}\right)=(2.034)(1.158)(1.262)(0.787) C_{\bar{L} d u d \tilde{H}}^{p 111}(M)=2.34 C_{\bar{L} d u d \tilde{H}}^{p 111}(M) \quad(44) \\
C_{\tilde{L} d Q Q \tilde{H}}^{p 11}\left(m_{p}\right)=(2.034)(1.551)(1.081)(0.787) C_{\bar{L} d Q Q \tilde{H}}^{p 111}(M)=2.68 C_{\bar{L} d Q Q \tilde{H}}^{p 111}(M)
\end{gathered}
$$

Outline

1 Lecture 5: SMEFT - Dimension-five and -seven Operators

2 Dim-5 operator

3 Dim-7 operators

4 Hilbert series: a powerful tool for counting operators

Hilbert series

skipped for limited time.
All references can be traced back from latest work by Murayama's group:
B. Henning, et al, Operator bases, S-matrices, and their partition functions, arXiv:1706.08520
B. Henning, et al, 2, 84, 30, 993, ... : Higher dimensional operators in SMEFT, arXiv:1512.03433

