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Lecture 3b: Techniques in EFT

RG running at one loop

RG running at one loop

� Conventional perturbation theory may fail for a process that involves large
ratios of scales, e.g., m/M, since (g/(4π))2 ln(M/m) could be large.
m: typical external particle mass/momentum,
M: internal particle mass.

� This issue can be best handled in EFT:
log-independent term by matching and
log enhancement by RG running.
Matching and RG running can be done independently and at different
orders as required.
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RG running at one loop

RG running at one loop

� Parameters do not exhibit scale dependence at tree level, though
matching is done at M. – This is a loop effect.

� In matching calculation, same renormalization scheme must be applied in
UV and IR theories.
The integrated-out heavy field offers the only scale M. Thus large log can
be avoided in matching by setting renormalization/matching scale µ = M.
– Can be seen at loop level.

� Large log ln(M/m) for a process at low energy will be accounted for by
RG running from M to m.
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RG running at one loop

RG running at one loop – Example 1

Example 1: One-loop RG running of GS in L2(φ ,ψ)

� We use mass-independent renormalization scheme:
dimensional regularization (DR) with minimal subtraction (MS)

� To do renormalization, consider L2(φ ,ψ) in terms of bare quantities:

L2(φ ,ψ) = iψ̄0/∂ψ0 +
1
2

G0
Sψ̄0ψ0ψ̄0ψ0 −y0

φ ψ̄0ψ0φ0 + terms not relevant here (1)

� In d = 4−2ε dimensions, the dimensions of fields are modified to

[ψ ] =
3
2
− ε , [φ ] = 1− ε (2)

Fields and couplings are renormalized as

ψ0 =
√

Zψ ψ , φ0 =
√

Zφ φ , G0
S = ZGS

µ2εGS , y0
φ = Zyφ µεyφ (3)

where an arbitrary mass scale µ is introduced so that all renormalized
parameters reserve their dimensions in 4 dim.
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RG running at one loop

RG running at one loop – Example 1

� Zs deviate from unity because of quantum effects.
In perturbation theory Z −1 is considered small. Here at one loop Z −1 ∝ y2

φ .

� Thus L2(φ ,ψ) splits into a renormalized piece and counterterm (c.t.) piece:

L2(φ ,ψ) = iZψψ̄/∂ψ +
1
2

ZGS
Z 2

ψ GS µ2ε ψ̄ψψ̄ψ −Zyφ Zψ Z 1/2
φ yφ µε ψ̄ψφ + · · · (4)

= iψ̄/∂ψ +
1
2

GS µ2ε ψ̄ψψ̄ψ −yφ µε ψ̄ψφ

+i
[

Zψ −1
]

ψ̄/∂ψ +
1
2

[

ZGS
Z 2

ψ −1
]

GS µ2ε ψ̄ψψ̄ψ

−
[

Zyφ Zψ Z 1/2
φ −1

]

yφ µε ψ̄ψφ + · · · (5)

c.t.: determined by renormalization conditions, and thus scheme
dependent.
In MS, they contain only UV divergent terms.
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RG running at one loop – Example 1

� To compute RG equations (RGE) for GS , start from the fact that bare
quantities are independent of µ :

0 = µ
dG0

S

dµ
= ZGS

µ2ε µ
dGS

dµ
+µ2εGS µ

dZGS

dµ
+2εZGS

µ2ε GS (6)

⇒ βGS
= µ

dGS

dµ
=−GS µ

d lnZGS

dµ
−2εGS (7)

In mass-independent schemes, µ dependence enters only through
couplings.

� Here we are computing RGE for GS due to Yukawa coupling yφ of φ with
ψ, i.e.,

µ
d lnZGS

dµ
∝ µ

dyφ

dµ
= βyφ (8)
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RG running at one loop – Example 1

� βyφ can be manipulated as for βGS
:

0 = µ
dy0

φ

dµ
= Zyφ µε µ

dyφ
dµ

+µε yφ µ
dZyφ

dµ
+ εZyφ µε yφ (9)

⇒ βyφ =−yφ µ
d lnZyφ

dµ
− εyφ (10)

Again, the first term is of higher order than the second term, and can be
dropped for our purpose here.

� In summary, the leading term is

βGS
=−GS µ

dyφ
dµ

d lnZGS

dyφ
−2εGS =−GSβyφ

d lnZGS

dyφ
−2εGS (11)

⇒ βGS
= lim

ε→0

[

−GS(−εyφ )
d lnZGS

dyφ

]

(12)

Thus, to get RG running of GS , we have to determine ZGS
.

SYS Univ, July 24-28, 2017 Page 16



Lecture 3b: Techniques in EFT

RG running at one loop

RG running at one loop – Example 1

� βyφ can be manipulated as for βGS
:

0 = µ
dy0

φ

dµ
= Zyφ µε µ

dyφ
dµ

+µε yφ µ
dZyφ

dµ
+ εZyφ µε yφ (9)

⇒ βyφ =−yφ µ
d lnZyφ

dµ
− εyφ (10)

Again, the first term is of higher order than the second term, and can be
dropped for our purpose here.

� In summary, the leading term is

βGS
=−GS µ

dyφ
dµ

d lnZGS

dyφ
−2εGS =−GSβyφ

d lnZGS

dyφ
−2εGS (11)

⇒ βGS
= lim

ε→0

[

−GS(−εyφ )
d lnZGS

dyφ

]

(12)

Thus, to get RG running of GS , we have to determine ZGS
.

SYS Univ, July 24-28, 2017 Page 17



Lecture 3b: Techniques in EFT

RG running at one loop

RG running at one loop – Example 1

� Cautions:
Renormalized quantities are regular in the limit ε → 0.
The limit can only be properly taken in the end of calculation.

� But to get ZGS
, we also need Zψ . Easiest thing first: Zψ .

p k +p

kφ
ψ

We need the term ∝ /p:

diagram =
∫ dd k

(2π)d (−iyφ µε)
i

/k +/p
(−iyφ µε)

i
k2 −m2

= y2
φ µ2ε

∫ dd k
(2π)d

/k +/p
(k +p)2(k2 −m2)
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RG running at one loop – Example 1

Use Feynman parameter x to combine the two denominators:

1
(k +p)2(k2 −m2)

=
∫ 1

0
dx

1
[x(k +p)2 +(1−x)(k2 −m2)]2

=
∫ 1

0
dx

1
[ℓ2 −∆+ i0+]2

, ℓ= k +xp, ∆= m2(1−x)−p2x(1−x)

Replace k = ℓ−xp:

diagram = y2
φ µ2ε

∫ 1

0
dx

∫ dd ℓ

(2π)d

/ℓ+(1−x)/p
[ℓ2 −∆+ i0+]2

= /py2
φ

∫ 1

0
dx (1−x) µ2ε

∫ dd ℓ

(2π)d

1
[ℓ2 −∆+ i0+]2
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RG running at one loop – Example 1
Use standard loop integrals in d = 4−2ε dims:

µ2ε
∫ dd ℓ

(2π)d

1
[ℓ2 −∆+ i0+]2

=
i

(4π)2

[

4πµ2

∆

]ε

Γ(ε)

=
i

(4π)2

[

1
ε
− γE + ln

4πµ2

∆
+O(ε)

]

(13)

We finally get

diagram = /py2
φ

i
(4π)2

1
ε

∫ 1

0
dx (1−x)+finite = /py2

φ
i

(4π)2

1
ε

1
2
+finite

Requiring the c.t. diagram
p

× = i(Zψ −1)/p

to cancel the UV divergent term (MS), we obtain

i(Zψ −1)/p+/py2
φ

i
(4π)2

1
ε

1
2
= 0 ⇒ (Zψ −1) =−1

2

y2
φ

(4π)2

1
ε

(14)
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RG running at one loop – Example 1

� Now we compute ZGS
.

The one-loop ψ̄ψψ̄ψ diagrams due to yφ couplings in EFT2 are

a

1

2

3

4

k

b

1

2

3

4

k

−k

c

1

2

3

4

k

+k

� Focus on ψ̄(p3)ψ(p1)ψ̄(p4)ψ(p2), ignoring trivial crossing for both one-loop
diagrams and c.t.

� These diagrams are at most logarithmically divergent.

� We are interested only in divergent terms which are independent of
external momenta.
We can thus set pi = 0.
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RG running at one loop – Example 1

The diagrams give

diag a = 2× iGS µ2ε
∫ dd k

(2π)d ū3(−iyφ µε)
i
/k

i
/k
(−iyφ µε)u1

i
k2 −m2 ū4u2

= 2iGS µ2ε(ū3u1ū4u2
)

× iy2
φ µ2ε

∫ dd k
(2π)d

1
k2(k2 −m2)

= 2iGS µ2ε(ū3u1ū4u2
)

×
−y2

φ

(4π)2

1
ε
+finite (15)

diag b = 2× iGS µ2ε
∫ dd k

(2π)d ū3
i
/k
(−iyφ µε)u1ū4

i
−/k

(−iyφ µε)u2
i

k2 −m2 (16)

diag c = 2× iGS µ2ε
∫ dd k

(2π)d ū3
i
/k
(−iyφ µε)u1ū4

i
+/k

(−iyφ µε)u2
i

k2 −m2 (17)

diagrams b and c cancel each other!
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RG running at one loop

RG running at one loop – Example 1

� If diagrams b and c did not cancel, they would induce a new structure

ū3γµ u1 ū4γµ u2

corresponding to the effective int. involving the dim-6 operator:

OV = ψ̄γµ ψψ̄γµ ψ (18)

This is called mixing of operators under renormalization.
� Back to the issue. UV div in diag abc is required to cancel c.t.:

c.t. diagram for ψ̄ψψ̄ψ = i(ZGs Z 2
ψ −1)GS µ2ε(ū3u1ū4u2

)

+crossing (19)

⇒ i(ZGs Z 2
ψ −1)GS µ2ε +2iGS µ2ε −y2

φ

(4π)2

1
ε
= 0

⇒ (ZGs Z 2
ψ −1) = 2

y2
φ

(4π)2

1
ε

(20)
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RG running at one loop – Example 1

� In perturbation theory Z −1 is considered small though it may contain 1/ε,
because ε → 0 is taken only in the end of calculation.

ZGs =

[

1+2
y2

φ

(4π)2

1
ε

]

[

1+(Zψ −1)
]−2

≈ 1+2
y2

φ

(4π)2

1
ε
−2(Zψ −1) = 1+

3y2
φ

(4π)2

1
ε

(21)

� After this lengthy calculation, we obtain at one-loop level:

βGS
= GS lim

ε→0

[

εyφ
d lnZGS

dyφ

]

≈ GS lim
ε→0

[

εyφ
dZGS

dyφ

]

= GS
6y2

φ

(4π)2 (22)

and RGE for GS exact to one loop becomes

µ
dGS

dµ
=

6y2
φ

(4π)2 GS (23)
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RG running at one loop

RG running at one loop – Example 1

� Are we done?
Not really. There is also µ dependence in coupling yφ .

If we ignore it together with µ dependence in GS on rhs, we get in the
so-called leading log approximation:

GS(µ)−GS(M) =
6y2

φ

(4π)2 GS(M) ln
µ
M

(24)

� We can do better by including µ dependence on rhs of RGE.
For this we need the β function for yφ , again due to yφ interaction.

� Exercise – verify that

βyφ = 5
y3

φ

(4π)2 (25)
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RG running at one loop

RG running at one loop – Example 1

� Hints – Find first

Zφ −1 =−2
y2

φ

(4π)2

1
ε
, Zyφ Zψ Z 1/2

φ −1 =
y2

φ

(4π)2

1
ε
⇒ Zyφ −1 = 5

2
y2

φ
(4π)2

1
ε

Then, proceed as follows

βyφ =−yφ µ
d lnZyφ

dµ
− εyφ =−yφ βyφ

d lnZyφ

dyφ
− εyφ

⇒ βyφ = lim
ε→0

(−yφ )(−εyφ )
d lnZyφ

dyφ
= 5

y3
φ

(4π)2 (26)

� Important –
Everything is manipulated for ε 6= 0 and in the spirit of pert. theory
Only at the end of the day we take ε → 0 for renormalizaed quantities.
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RG running at one loop – Example 1

� Comments:
1. β functions depend on renormalization schemes applied, mass
dependent or independent.

• In mass-dependent schemes βs vary smoothly in scale. See A.
Manohar, arXiv:hep-ph/9606222.

• In mass-independent schemes βs jump when crossing threshold of a
heavy particle which is to be integrated out.

• Although physical results are independent of schemes,
mass-independent ones better suit the need of modern QFT:
simpler topology of diagrams though more divergent;
only UV divergence required for βs vs finite terms required in
mass-dependent schemes.
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RG running at one loop – Example 1

2. There is no essential difference in computing RGE between
renormalizable and nonrenormalizable couplings. –
EFTs behave at low energies as well as renormalizable ones!

� Back to our main issue. RG running of ‘effective coupling’ GS can be
better done by including RG running of ‘fundamental coupling’ yφ :



















µ
dGS

dµ
= 6

y2
φ

(4π)2 GS

µ
dyφ
dµ

= 5
y3

φ

(4π)2

� The above is very in QFT. We solve more generally the following:














µ
d lnG

dµ
= ag2

µ
dg2

dµ
= b(g2)2

(

G → GS , g → yφ ; a → 6
(4π)2 , b → 10

(4π)2

)

(27)
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RG running at one loop – Example 1

� Take their ratio:
d lnG
dg2 =

a
b

1
g2 ⇒ d lnG =

a
b

d ln(g2)

⇒ ln
G(µ1)

G(µ2)
=

a
b

ln
g2(µ1)

g2(µ2)
⇒ G(µ1)

G(µ2)
=

[

g2(µ1)

g2(µ2)

]a/b

(28)

Summation of leading log to all orders!

� Exercise – verify that expansion of the above to leading order in
g2(µ2) ln(µ1/µ2) recovers the previous result in leading-log approximation.
Hint – first solve g2(µ) from its RGE.
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RG running at one loop – Example 2

Example 2: Mixing of operators under renormalization
Operators of same dim and symmetry can mix under renormalization.

� To see this in a simple framework, consider the EFT of φ , ψ:

LEFT(φ ,ψ) = iψ̄/∂ψ +
1
2

GV OV +
1
2
(∂µ φ)2 − 1

2
m2φ2 −yφ ψ̄ψφ + · · · , (29)

OV = ψ̄γµ ψψ̄γµ ψ , (30)

where the effective interaction GV OV /2 may have arisen from integrating
out a heavy vector boson of mass M similarly to the case of 4-Fermi weak
interactions.

� Consider RG running of GV due to yφ coupling.
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RG running at one loop – Example 2

� It turns out that its running is not closed!
It induces at one loop a new interaction proportional to

OT = ψ̄σ µν ψψ̄σµν ψ (31)

� In principle other forms can also join mixing at higher orders.
We work at one loop where OV and OT are closed under renor.

� Consistency therefore requires that we include both operators:

LEFT(φ ,ψ) = iψ̄/∂ψ +
1
2

GV OV +
1
2

GT OT +
1
2
(∂µ φ)2 − 1

2
m2φ2 −yφ ψ̄ψφ + · · · , (32)

because we generally have GT (µ)GT (µ) 6= 0 even if GT (M) = 0.
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RG running at one loop – Example 2

� Introduce c.t. as before to both interactions:

LEFT(φ ,ψ) ⊃ +
1
2

[

ZGV
Z 2

ψ −1
]

GV µ2ε
OV +

1
2

[

ZGT
Z 2

ψ −1
]

GT µ2ε
OT (33)

Zψ was known previously.

c.t. to cancel UV div with one insertion of that can induce an
[

ZGV
Z 2

ψ −1
]

GV µ2ε either OV or OT OV
[

ZGT
Z 2

ψ −1
]

GT µ2ε either OV or OT OT

Insertion of GV OV :

a

1

2

3

4

k
γµ ⊗ γµ

b

1

2

3

4

k

−k
γµ ⊗ γµ

c

1

2

3

4

k

+k
γµ ⊗ γµ
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RG running at one loop – Example 2

We set pi = 0, and it is not necessary to include crossing diagrams.

diagram a = 2× iGV µ2ε
∫ dd k

(2π)d ū3(−iyφ µε)
i
/k

γµ
i
/k
(−iyφ µε)u1

i
k2 −m2 ū4γµ u2

= −2GV µ2εy2
φ
(

ū3γα γµ γβ u1
)(

ū4γµ u2
)

µ2ε
∫ dd k

(2π)d

kα kβ

(k2)2(k2 −m2)
(34)

Using symmetric loop integration,

µ2ε
∫ dd k

(2π)d

kα kβ

(k2)2(k2 −m2)
=

1
d

gαβ µ2ε
∫ dd k

(2π)d

1
(k2)(k2 −m2)

=
1
4

gαβ i
(4π)2

1
ε
+finite (35)

and

γα γµ γβ gαβ = (2−d)γµ = (−2+2ε)γµ (36)
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we have finally

diagram a = −2GV µ2εy2
φ (−2)(γµ ⊗ γµ )

1
4

i
(4π)2

1
ε
+finite, (37)

where we denote (A⊗B) ≡ ū3Au1ū4Bu2. The other two diagrams are

diagram b = 2× iGV µ2ε(−iyφ µε)2
∫ dd k

(2π)d γµ
i
/k
⊗ γµ i

−/k
i

k2 −m2

= 2GV µ2εy2
φ
(

γµ γα ⊗ γµ γβ )µ2ε
∫ dd k

(2π)d

kα kβ

(k2)2(k2 −m2)

= +2iGV µ2εy2
φ
(

γµ γα ⊗ γµ γα)1
4

1
(4π)2

1
ε
+finite (38)

diagram c = −2iGV µ2ε y2
φ
(

γα γµ ⊗ γµ γα)1
4

1
(4π)2

1
ε
+finite (39)
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It is nice that they sum to a tensor form:
(

γµ γα ⊗ γµ γα)−
(

γα γµ ⊗ γµ γα)=−i2
(

σµν ⊗ γµ γν)=−2
(

σµν ⊗σ µν) (40)

In summary,

diagrams with CV OV inserted

= iGV µ2εy2
φ

(

(γµ ⊗ γµ )−
(

σµν ⊗σ µν)
) 1
(4π)2

1
ε
+finite (41)

Note that mixing of operators takes place.

With an insertion of GT OT , the diagrams are similar:

a

1

2

3

4

k
σµν ⊗σ µν

b

1

2

3

4

k

−k
σµν ⊗σ µν

c

1

2

3

4

k

+k
σµν ⊗σ µν
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But the algebra is more complicated. The diagrams yield

a = 2iGT µ2εy2
φ (−i)2i3µ2ε

∫

dd k
(2π)d

1
k2 −m2

1
/k

σ µν 1
/k
⊗σµν = 0, (42)

b = 2iGT µ2εy2
φ (−i)2i3µ2ε

∫ dd k
(2π)d

1
k2 −m2 σ µν 1

/k
⊗σµν

1
−/k

= +2GT µ2εy2
φ σ µν γα ⊗σµν γα

i
(4π)2

1
4

1
ε
+finite, (43)

c = 2iGT µ2εy2
φ (−i)2i3µ2ε

∫

dd k
(2π)d

1
k2 −m2

1
/k

σ µν ⊗σµν
1
/k

= −2GT µ2ε y2
φ γα σ µν ⊗σµν γα

i
(4π)2

1
4

1
ε
+finite (44)

The sum of the γ matrices is, [σ µν ,γα ]⊗σµν γα .
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Using the relations

γµ γν γα = gµν γα +gνα γµ −gµα γν − iεµναβ γ5γβ , (45)

γ5 = iγ0γ1γ2γ3, ε0123 =−ε0123 =+1,

we compute as follows

σµν γα = i
(

+gνα γµ −gµα γν − iεµναβ γ5γβ
)

(46)

γα σµν = i
(

−gνα γµ +gµα γν − iεµναβ γ5γβ
)

(47)
[

σµν ,γα
]

= i2(gνα γµ −gµα γν ) (48)
[

σµν ,γα
]

⊗σ µν γα = i2(gνα γµ −gµα γν )⊗ iγµ γν γα =−12γµ ⊗ γµ (49)

In summary,

diagrams with CT OT inserted = iGT µ2εy2
φ (γµ ⊗ γµ )

−6
(4π)2

1
ε
+finite (50)
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These divergences are cancelled by c.t.:

(γµ ⊗ γµ ) 0 = i [ZGV
Z 2

ψ −1]GV µ2ε + iGV µ2εy2
φ

1
(4π)2

1
ε
+ iGT µ2εy2

φ
−6

(4π)2

1
ε

(

σµν ⊗σ µν) 0 = i [ZGT
Z 2

ψ −1]GT µ2ε + iGV µ2εy2
φ

−1
(4π)2

1
ε

⇒



















(ZGV
Z 2

ψ −1)GV =
y2

φ

(4π)2

1
ε
(−GV +6GT )

(ZGT
Z 2

ψ −1)GT =
y2

φ

(4π)2

1
ε

GV

(51)

Using eq.(12) for βGS
that also applies here and eq.(14), the above

gives

βGV
=

y2
φ

(4π)2 12GT , βGT
=

y2
φ

(4π)2 2(GV +GT ) (52)
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In terms of matrix notation, RGEs become

µ
d

dµ

(

GV

GT

)

=
2y2

φ

(4π)2

(

0 6
1 1

)(

GV

GT

)

(53)

The matrix on rhs can be diagonalized by a similarity transformation
to the eigenvalues and eigenvectors:

G1 =
1√
10

(GV +3GT ), G2 =
1√
5
(GV −2GT ), (54)

µ
dG1

dµ
= y2

φ a1G1, a1 =
6

(4π)2 , (55)

µ
dG2

dµ
= y2

φ a2G2, a2 =− 4
(4π)2 . (56)
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Including RG running of yφ in eq.(26), the leading log can be summed
as using eq.(28):

G1(µ)
G1(µ0)

= R3/5,
G2(µ)
G2(µ0)

= R−2/5, R =
y2

φ (µ)
y2

φ (µ0)
(57)

which translate into the running of the original couplings:

GV (µ) =
1
5

[(

2R3/5 +3R−2/5
)

GV (µ0)+6
(

R3/5 −R−2/5
)

GT (µ0)
]

(58)

GT (µ) =
1
5

[(

3R3/5 +2R−2/5
)

GT (µ0)+
(

R3/5 −R−2/5
)

GV (µ0)
]

(59)

Conclusion: so long as yφ runs, a nonzero GV can always develop
from a nonzero GT .
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Matching calculation at one loop

We said earlier that matching and RG running can be done
independently to various orders in perturbation theory.

Matching: find out new terms in L2 for EFT2 (IR theory) that account
for effects on light fields of a heavy field that appears in L1 for EFT1

(UV theory) but has been integrated out in L2 for EFT2.

Continue with our example:
Example 1: heavy scalar

L1(Φ,φ ,ψ) = [iψ̄/∂ψ −κψ̄ψ + · · · ]+
[

1
2
(∂µΦ)(∂ µΦ)− 1

2
M2Φ2 + · · ·

]

−yΦψ̄ψΦ+ · · · (60)

Light fields: ψ of mass κ, φ of mass m.
Heavy field: Φ of mass M ≫ m, κ
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Matching calculation at one loop – Example 1

We want to increase accuracy in ψψ → ψψ scattering amplitude.

This is accomplished by improvement in RGE and matching calc.

For matching at one loop, this requires to improve bilinear and quartic
terms in ψ:

L2(φ ,ψ) = izψ ψ̄/∂ψ −κψ̄ψ +
1
2

GSψ̄ψψ̄ψ + · · · (61)

Our notations are a bit messy: we sometimes write explicitly
renormalization constants or c.t. but sometimes not.
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Matching calculation at one loop – Example 1

How to do matching at one loop?

� Choose a one-particle-irreducible function of light fields that helps to
determine terms in L2.

� Compute the function at one loop in EFT1 involving a heavy field Φ of
mass M, and fix all relevant c.t. using mass-independent scheme. We get
answer A1.

� Compute the function at one loop in EFT2 involving an effective interaction
that arises from integrating out Φ, and fix all relevant c.t. using the same
scheme. We get answer A2.

� Take the difference A1 −A2 and set the scale µ = M, and put the answer
back into L2.
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Matching calculation at one loop – Example 1

� For example, to compute the scattering amplitude ψψ → ψψ at one loop in
EFT2, we have to do matching in both zφ , which affects normalization, and
GS, which contributes to the part of the amplitude due to integrated out Φ.

� Matching calculation of zφ .
In EFT1 the self-energy diagram of ψ due to Yukawa coupling with Φ gives

(−iyΦ)
2µ2ε

∫ dd k
(2π)d

i
/k +/p−κ

i
k2 −M2

= y2
Φ

∫

dx µ2ε
∫ dd ℓ

(2π)d

x/p+κ
[ℓ2 −∆+ i0+]2

, ∆= (1−x)κ2 +xM2

(Feynman diagram on page 10)
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Lecture 3b: Techniques in EFT

Matching calculation at one loop

Matching calculation at one loop – Example 1

� We want the part ∝ /p whose coefficient is

iy2
Φ

(4π)2

∫

dx x
[

1
ε̄
+ ln

µ2

∆− i0+

]

,
1
ε̄
=

1
ε
− γE + ln(4π)

� In modified minimal subtraction (MS), we cancel the 1/ε̄ term by c.t.
(Zψ −1)i/p, leaving with us the finite piece:

iy2
Φ

(4π)2

[

1
2

ln
µ2

M2 −
∫

dx x ln
(

x +(1−x)δ
)

]

, δ =
κ2

M2

which can be expanded systematically in the small parameter δ :

iy2
Φ

(4π)2

[

1
2

ln
µ2

M2 +
1
4
− 1

4
δ 2 (2lnδ +1)+ · · ·

]

Exercise – derive the above expansion.
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Matching calculation at one loop – Example 1

� We want the part ∝ /p whose coefficient is

iy2
Φ

(4π)2

∫

dx x
[

1
ε̄
+ ln

µ2

∆− i0+

]

,
1
ε̄
=

1
ε
− γE + ln(4π)

� In modified minimal subtraction (MS), we cancel the 1/ε̄ term by c.t.
(Zψ −1)i/p, leaving with us the finite piece:

iy2
Φ

(4π)2

[

1
2

ln
µ2

M2 −
∫

dx x ln
(

x +(1−x)δ
)

]

, δ =
κ2

M2

which can be expanded systematically in the small parameter δ :

iy2
Φ

(4π)2

[

1
2

ln
µ2

M2 +
1
4
− 1

4
δ 2 (2lnδ +1)+ · · ·

]

Exercise – derive the above expansion.
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Lecture 3b: Techniques in EFT

Matching calculation at one loop

Matching calculation at one loop – Example 1

� In EFT2 the one loop formed by GS coupling does not contribute a /p term
to the self-energy of ψ.

� This difference between EFT1 and EFT2 is then amended by attaching to
L2 a term:

(zψ −1)iψ̄/∂ψ , (62)

where at µ = M

zψ(M)−1 =
y2
Φ

(4π)2

1
4
[1+ · · · ]. (63)
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Lecture 3b: Techniques in EFT

Matching calculation at one loop

Matching calculation at one loop – Example 1

Matching calculation of GS.

� In EFT1 compute 1-loop contri. to ψψ → ψψ due to Yukawa coupling of Φ.
� Again, for matching, not necessary to include crossing diag in both EFTs.

a b c d
Focus on momentum-indept terms. But we keep a mass κ for ψ to avoid
IR divergence. The first two diagrams are finite:

diagram a = (−iyΦµε)4
∫ dd k

(2π)d ū3
i

/k −κ
u1 ū4

i
−/k −κ

u2

[

i
k2 −M2

]2

(64)

diagram b = (−iyΦµε)4
∫ dd k

(2π)d ū3
i

/k −κ
u1 ū4

i
+/k −κ

u2

[

i
k2 −M2

]2

(65)
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Matching calculation at one loop – Example 1
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� Again, for matching, not necessary to include crossing diag in both EFTs.

a b c d
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Lecture 3b: Techniques in EFT

Matching calculation at one loop

Matching calculation at one loop – Example 1

� Their sum is simpler:

diagrams (ab) = y4
Φµ2ε

∫ d4k
(2π)4

ū3(/k +κ)u1ū4(2κ)u2

(k2 −κ2)2[k2 −M2]2

= y4
Φµ2ε2κ2ū3u1ū4u2

∫ d4k
(2π)4

1
(k2 −κ2)2[k2 −M2]2

(66)

where we reserve µ2ε associated with GS.
� Compute the loop integral:

∫

d4k
(2π)4

1
(k2 −κ2)2[k2 −M2]2

=
∫ 1

0
dx 6x(1−x)

∫ d4k
(2π)4

1
[k2 −∆+ i0+]4

δ =
κ2

M2

=
i

(4π)2

∫ 1

0
dx

x(1−x)
∆2 =

i
(4π)2

1
M4

∫ 1

0
dx

x(1−x)
[x +(1−x)δ ]2

, (67)
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Matching calculation at one loop – Example 1
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∫ 1

0
dx 6x(1−x)

∫ d4k
(2π)4

1
[k2 −∆+ i0+]4

δ =
κ2

M2

=
i

(4π)2

∫ 1

0
dx
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∆2 =

i
(4π)2

1
M4
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Lecture 3b: Techniques in EFT

Matching calculation at one loop

Matching calculation at one loop – Example 1

� We want to expand in small δ .
It is not possible to expand the integrand directly.
You may appeal to Mathematica etc. But sometimes you have to do it
yourself when softwares cannot do it well.

� There is a systematical way to do so here by first finishing integration with
fractioning,

x(1−x)
(x +a)2 =

−(x +a)2 +(1+2a)(x +a)−a(1+a)
(x +a)2 , a =

δ
1−δ

∫ 1

0
dx

x(1−x)
[x +(1−x)δ ]2

=
1

(1−δ)2

[

−1+(1+2a) ln
1+a

a
−a(1+a)

(

1
a
− 1

1+a

)]

and then expanding in δ .
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Lecture 3b: Techniques in EFT

Matching calculation at one loop

Matching calculation at one loop – Example 1

� In summary, the first terms are

diag (ab) =
iy4
Φ

(4π)2

2κ2

M4 µ2ε ū3u1ū4u2 [(−2− lnδ)+(−4−4lnδ)δ + · · · ] (68)

� To compute diagram c, compute first self-energy of Φ due to ψ loop:

iΣΦ(p
2)

= −(−iyΦµε)2
∫ dd k

(2π)d tr
i

/k −κ
i

/k +/p−κ

= − iy2
Φ

(4π)2
12

∫ 1

0
[κ2 −x(1−x)p2 ]

[

1
ε̄
+

1
3
+ ln

µ2

κ2 −x(1−x)p2

]

= − iy2
Φ

(4π)2

{

2[6κ2 −p2]
1
ε̄
+12

∫ 1

0
[κ2 −x(1−x)p2]

[

1
3
+ ln

µ2

κ2 −x(1−x)p2

]}

(69)
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Matching calculation at one loop – Example 1

� In summary, the first terms are

diag (ab) =
iy4
Φ

(4π)2

2κ2

M4 µ2ε ū3u1ū4u2 [(−2− lnδ)+(−4−4lnδ)δ + · · · ] (68)

� To compute diagram c, compute first self-energy of Φ due to ψ loop:

iΣΦ(p
2)

= −(−iyΦµε)2
∫ dd k

(2π)d tr
i

/k −κ
i

/k +/p−κ

= − iy2
Φ

(4π)2
12

∫ 1

0
[κ2 −x(1−x)p2 ]

[

1
ε̄
+

1
3
+ ln

µ2

κ2 −x(1−x)p2

]

= − iy2
Φ

(4π)2

{

2[6κ2 −p2]
1
ε̄
+12

∫ 1

0
[κ2 −x(1−x)p2]

[

1
3
+ ln

µ2

κ2 −x(1−x)p2

]}

(69)
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Matching calculation at one loop

Matching calculation at one loop – Example 1

� The 1/ε̄ term is cancelled by c.t., so that as p2 → 0 we have

i
[

ΣΦ(p
2)+c.t.

]

p2=0
= − iy2

Φ

(4π)2 4κ2
[

1+3ln
µ2

κ2

]

(70)

Caution: likely illegitimate to drop p2 with respect to κ2.

diag c and c.t. = (−iyΦµε)2ū3u1ū4u2

(

i
−M2

)2

i
[

Σφ (p2)+c.t.
]

p2=0

= − iy4
Φ

(4π)2

4κ2

M4 µ2ε ū3u1ū4u2

[

1+3ln
µ2

κ2

]

(71)
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Lecture 3b: Techniques in EFT

Matching calculation at one loop

Matching calculation at one loop – Example 1

� To compute diag d, compute first 1-loop Φψ̄ψ vertex due to Φ Yukawa
coupling.

� UV div is independent of external momenta, but again the dropped p2

term is of the same order as the kept κ2 term.

−iyΦµε VΦψ̄ψ (0,0) = (−iyΦµε)3
∫ dd k

(2π)d

i
/k −κ

i
/k −κ

i
k2 −M2

= y3
Φµ3ε

∫ dd k
(2π)d

k2 +κ2

[k2 −κ2]2[k2 −M2]

= y3
Φµε i

(4π)2

∫

dx
[

1
ε̄
+ ln

µ2

∆
− 2(1−x)κ2

∆

]

(72)
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Matching calculation at one loop – Example 1

� To compute diag d, compute first 1-loop Φψ̄ψ vertex due to Φ Yukawa
coupling.

� UV div is independent of external momenta, but again the dropped p2

term is of the same order as the kept κ2 term.

−iyΦµε VΦψ̄ψ (0,0) = (−iyΦµε)3
∫ dd k

(2π)d

i
/k −κ

i
/k −κ

i
k2 −M2

= y3
Φµ3ε

∫ dd k
(2π)d

k2 +κ2

[k2 −κ2]2[k2 −M2]

= y3
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(4π)2
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∆
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∆
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Lecture 3b: Techniques in EFT

Matching calculation at one loop

Matching calculation at one loop – Example 1

� The 1/ε̄ term is removed by c.t. for the vertex, so that

−iyΦµε VΦψ̄ψ (0,0)+c.t. δ =
κ2

M2

= iyΦµε y2
Φ

(4π)2

∫

dx
[

ln
µ2

M2 − ln[x +(1−x)δ ]−δ
2(1−x)

x +(1−x)δ

]

= iyΦµε y2
Φ

(4π)2

[

ln
µ2

M2 +1+(2+3lnδ)δ + · · ·
]

(73)

Including a factor of 2, we have

diag d and c.t.

= 2× (−iyΦµε)
i

−M2 ū3u1ū4u2
[

−iyΦµε VΦψ̄ψ(0,0)+c.t.
]

= − iy4
Φ

(4π)2 µ2ε ū3u1ū4u2
2

M2

[

ln
µ2

M2 +1+
κ2

M2

(

2+3ln
κ2

M2

)

+ · · ·
]

(74)
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Matching calculation at one loop

Matching calculation at one loop – Example 1

In summary, the leading one-loop renormalized contribution to
ψψ → ψψ in EFT1 is

renor. one-loop EFT1 diag. for ψψ → ψψ due to Φ exchange

=
i2y4

Φ

(4π)2M2 µ2ε ū3u1ū4u2

{

−1− ln
µ2

M2 +δ
(

−6−6ln
µ2

M2 +2lnδ
)

+ · · ·
}

(75)

where it is actually unclear if the O(δ) terms are complete.
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Matching calculation at one loop

Matching calculation at one loop – Example 1

� In EFT2 compute the one-loop contribution to ψψ → ψψ due to effective GS

coupling.

a b c d

� All diagrams are now UV divergent.

diagram a = (iGS µ2ε)2
∫ dd k

(2π)d ū3
i

/k −κ
u1ū4

i
−/k −κ

u2 (76)

diagram b = (iGS µ2ε)2
∫ dd k

(2π)d ū3
i

/k −κ
u1ū4

i
+/k −κ

u2 (77)

SYS Univ, July 24-28, 2017 Page 82



Lecture 3b: Techniques in EFT

Matching calculation at one loop

Matching calculation at one loop – Example 1
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Matching calculation at one loop

Matching calculation at one loop – Example 1

� Their sum is

diagrams (ab) = G2
S µ2ε µ2ε

∫ dd k
(2π)d

ū3(/k +κ)u1ū42κu2

[k2 −κ2]2

= G2
S µ2ε i

(4π)2 2κ2ū3u1ū4u2

[

1
ε̄
+ ln

µ2

κ2

]

(78)

� Diagram c is identical in two EFTs in our approximation.

diagram d = 2× (iGS µ2ε)2
∫ dd k

(2π)d ū3
i

/k −κ
i

/k −κ
u1ū4u2

= G2
S µ2ε ū3u1ū4u2

i
(4π)2 2κ2

[

3
ε̄
+3ln

µ2

κ2 +1
]

(79)

� Absorbing the 1/ε̄ terms by c.t. for GS coupling in L2, we are left with

renormalized 1-loop EFT2 diagrams for ψψ → ψψ due to GS coupling

= G2
S µ2ε i

(4π)2 2κ2ū3u1ū4u2

{

−1−2ln
µ2

κ2

}

(80)
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Matching calculation at one loop – Example 1
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[k2 −κ2]2

= G2
S µ2ε i

(4π)2 2κ2ū3u1ū4u2
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� Absorbing the 1/ε̄ terms by c.t. for GS coupling in L2, we are left with

renormalized 1-loop EFT2 diagrams for ψψ → ψψ due to GS coupling
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Matching calculation at one loop

Matching calculation at one loop – Example 1

� The difference

EFT1 −EFT2

gives the correction to GS upon using GS = y2
Φ/M2:

GS(µ) =
y2
Φ

M2 − 2y4
Φ

(4π)2M2

{

1+ ln
µ2

M2 +δ
(

5+4ln
µ2

M2

)}

(81)

which should be included in L2 as a consequence of matching.

� Comments –

• No lnκ2 singularity appears in the matching result as expected: IR
physics is not changed.

• To avoid large log, we should set µ = M in matching.
• Large logs will be summed to all orders by RGE in EFT2.
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Matching calculation at one loop – Example 1

� The difference
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which should be included in L2 as a consequence of matching.

� Comments –

• No lnκ2 singularity appears in the matching result as expected: IR
physics is not changed.

• To avoid large log, we should set µ = M in matching.
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Summary on EFT calculations

Summary on EFT calculations

� EFT is as good as a renormalizable theory so long as we are content with
finite accuracy required by experiments.

� Our working QFT is a tower of EFTs.

� In top-down approach:

• From high to low scales, a heavy field is integrated out at the border of
two consecutive EFTs.
Do matching calculation so that its effects on light fields are correctly
reproduced.
Set µ = M, mass of the heavy field, to avoid large log.

• Within one EFT, do RG running from µ = M to m, typical scale of a
process under consideration.
ln(M/m) is summed, improving simple perturbation theory calculations.
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reproduced.
Set µ = M, mass of the heavy field, to avoid large log.

• Within one EFT, do RG running from µ = M to m, typical scale of a
process under consideration.
ln(M/m) is summed, improving simple perturbation theory calculations.
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Summary on EFT calculations

� Matching and RG running can be done at various orders as desired.

� If UV theory is unknown or not solvable, i.e., in bottom-up approach, we
write down general EFT and leave its effective couplings as unknowns to
be determined from measurements.

� Important ingredients:
Symmetries: spacetime, gauge, global
Power counting: here according to inverse powers of heavy mass,
requiring mass-independent schemes
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