Lecture 3b on Standard Model Effective Field Theory

Yi Liao

Nankai Univ

SYS Univ, July 24-28, 2017

Page 1

・ロン ・聞と ・ 聞と ・ 聞と

э

1 Lecture 3b: Techniques in EFT

- RG running at one loop
- Matching calculation at one loop
- Summary on EFT calculations

-

Lecture 3b: Techniques in EFT

1 Lecture 3b: Techniques in EFT

- RG running at one loop
- Matching calculation at one loop
- Summary on EFT calculations

イロト イポト イヨト イヨト

э

RG running at one loop

RG running at one loop

- Conventional perturbation theory may fail for a process that involves large ratios of scales, e.g., *m/M*, since (*g*/(4π))² ln(*M/m*) could be large.
 m: typical external particle mass/momentum,
 M: internal particle mass.
- This issue can be best handled in EFT: log-independent term by matching and log enhancement by RG running.
 Matching and RG running can be done independently and at different orders as required.

RG running at one loop

RG running at one loop

- Conventional perturbation theory may fail for a process that involves large ratios of scales, e.g., *m/M*, since (*g*/(4π))² ln(*M/m*) could be large.
 m: typical external particle mass/momentum,
 M: internal particle mass.
- This issue can be best handled in EFT: log-independent term by matching and log enhancement by RG running. Matching and RG running can be done independently and at different orders as required.

RG running at one loop

RG running at one loop

- Parameters do not exhibit scale dependence at tree level, though matching is done at *M*. – This is a loop effect.
- In matching calculation, same renormalization scheme must be applied in UV and IR theories.

The integrated-out heavy field offers the only scale *M*. Thus large log can be avoided in matching by setting renormalization/matching scale $\mu = M$.

- Can be seen at loop level.
- Large log ln(M/m) for a process at low energy will be accounted for by RG running from M to m.

RG running at one loop

RG running at one loop

- Parameters do not exhibit scale dependence at tree level, though matching is done at *M*. – This is a loop effect.
- In matching calculation, same renormalization scheme must be applied in UV and IR theories.

The integrated-out heavy field offers the only scale *M*. Thus large log can be avoided in matching by setting renormalization/matching scale $\mu = M$.

- Can be seen at loop level.
- Large log ln(M/m) for a process at low energy will be accounted for by RG running from M to m.

<ロト < 同ト < 回ト < 回ト = 三

RG running at one loop

RG running at one loop

- Parameters do not exhibit scale dependence at tree level, though matching is done at *M*. – This is a loop effect.
- In matching calculation, same renormalization scheme must be applied in UV and IR theories.

The integrated-out heavy field offers the only scale *M*. Thus large log can be avoided in matching by setting renormalization/matching scale $\mu = M$.

- Can be seen at loop level.
- Large log ln(*M*/*m*) for a process at low energy will be accounted for by RG running from *M* to *m*.

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

RG running at one loop

RG running at one loop – Example 1

Example 1: One-loop RG running of G_S in $\mathscr{L}_2(\phi, \psi)$

 We use mass-independent renormalization scheme: dimensional regularization (DR) with minimal subtraction (MS)

To do renormalization, consider $\mathscr{L}_2(\phi, \psi)$ in terms of bare quantities:

$$\mathscr{C}_2(\phi,\psi) = i\bar{\psi}_0\bar{\partial}\psi_0 + \frac{1}{2}G_S^0\bar{\psi}_0\psi_0\bar{\psi}_0\psi_0 - y_\phi^0\bar{\psi}_0\psi_0\phi_0 + \text{terms not relevant here}$$
(1)

In $d = 4 - 2\varepsilon$ dimensions, the dimensions of fields are modified to

$$[\psi] = \frac{3}{2} - \varepsilon, \ [\phi] = 1 - \varepsilon \tag{2}$$

Fields and couplings are renormalized as

$$\psi_0 = \sqrt{Z_{\psi}}\psi, \ \phi_0 = \sqrt{Z_{\phi}}\phi, \ G_S^0 = Z_{G_S}\mu^{2\varepsilon}G_S, \ y_{\phi}^0 = Z_{y_{\phi}}\mu^{\varepsilon}y_{\phi}$$
(3)

where an arbitrary mass scale μ is introduced so that all renormalized parameters reserve their dimensions in 4 dim.

RG running at one loop

RG running at one loop – Example 1

Example 1: One-loop RG running of G_S in $\mathscr{L}_2(\phi, \psi)$

- We use mass-independent renormalization scheme: dimensional regularization (DR) with minimal subtraction (MS)
- To do renormalization, consider $\mathscr{L}_2(\phi, \psi)$ in terms of bare quantities:

$$\mathscr{L}_{2}(\phi,\psi) = i\bar{\psi}_{0}\partial\psi_{0} + \frac{1}{2}G_{S}^{0}\bar{\psi}_{0}\psi_{0}\bar{\psi}_{0}\psi_{0} - y_{\phi}^{0}\bar{\psi}_{0}\psi_{0}\phi_{0} + \text{terms not relevant here}$$
(1)

In $d = 4 - 2\varepsilon$ dimensions, the dimensions of fields are modified to

$$[\psi] = \frac{3}{2} - \varepsilon, \ [\phi] = 1 - \varepsilon \tag{2}$$

Fields and couplings are renormalized as

$$\psi_0 = \sqrt{Z_{\psi}}\psi, \ \phi_0 = \sqrt{Z_{\phi}}\phi, \ G_S^0 = Z_{G_S}\mu^{2\varepsilon}G_S, \ y_{\phi}^0 = Z_{y_{\phi}}\mu^{\varepsilon}y_{\phi}$$
(3)

where an arbitrary mass scale μ is introduced so that all renormalized parameters reserve their dimensions in 4 dim.

RG running at one loop

RG running at one loop – Example 1

Example 1: One-loop RG running of G_S in $\mathscr{L}_2(\phi, \psi)$

- We use mass-independent renormalization scheme: dimensional regularization (DR) with minimal subtraction (MS)
- To do renormalization, consider $\mathscr{L}_2(\phi, \psi)$ in terms of bare quantities:

$$\mathscr{L}_{2}(\phi,\psi) = i\bar{\psi}_{0}\partial\psi_{0} + \frac{1}{2}G_{S}^{0}\bar{\psi}_{0}\psi_{0}\bar{\psi}_{0}\psi_{0} - y_{\phi}^{0}\bar{\psi}_{0}\psi_{0}\phi_{0} + \text{terms not relevant here}$$
(1)

In $d = 4 - 2\varepsilon$ dimensions, the dimensions of fields are modified to

$$[\psi] = \frac{3}{2} - \varepsilon, \ [\phi] = 1 - \varepsilon \tag{2}$$

Fields and couplings are renormalized as

$$\psi_0 = \sqrt{Z_\psi}\psi, \ \phi_0 = \sqrt{Z_\phi}\phi, \ G_S^0 = Z_{G_S}\mu^{2\varepsilon}G_S, \ y_\phi^0 = Z_{y_\phi}\mu^{\varepsilon}y_\phi$$
(3)

where an arbitrary mass scale μ is introduced so that all renormalized parameters reserve their dimensions in 4 dim.

RG running at one loop

RG running at one loop – Example 1

Zs deviate from unity because of quantum effects. In perturbation theory Z−1 is considered small. Here at one loop Z−1∝y₀².

Thus $\mathscr{L}_2(\phi, \psi)$ splits into a renormalized piece and counterterm (c.t.) piece:

$$\begin{aligned} \mathscr{L}_{2}(\phi,\psi) &= iZ_{\psi}\bar{\psi}\partial\psi + \frac{1}{2}Z_{G_{S}}Z_{\psi}^{2}G_{S}\mu^{2\varepsilon}\bar{\psi}\psi\bar{\psi}\psi - Z_{y_{\phi}}Z_{\psi}Z_{\phi}^{1/2}y_{\phi}\mu^{\varepsilon}\bar{\psi}\psi\phi + \cdots \qquad (4) \\ &= i\bar{\psi}\partial\psi + \frac{1}{2}G_{S}\mu^{2\varepsilon}\bar{\psi}\psi\bar{\psi}\psi - y_{\phi}\mu^{\varepsilon}\bar{\psi}\psi\phi \\ &+ i[Z_{\psi}-1]\bar{\psi}\partial\psi + \frac{1}{2}\left[Z_{G_{S}}Z_{\psi}^{2}-1\right]G_{S}\mu^{2\varepsilon}\bar{\psi}\psi\bar{\psi}\psi \\ &- \left[Z_{y_{\phi}}Z_{\psi}Z_{\phi}^{1/2}-1\right]y_{\phi}\mu^{\varepsilon}\bar{\psi}\psi\phi + \cdots \qquad (5) \end{aligned}$$

c.t.: determined by renormalization conditions, and thus scheme dependent.

In MS, they contain only UV divergent terms.

ヘロン 人間 とくほとく ほとう

RG running at one loop

RG running at one loop – Example 1

- *Z*s deviate from unity because of quantum effects. In perturbation theory *Z*-1 is considered small. Here at one loop *Z*-1 ∝ y_{ϕ}^2 .
- Thus $\mathscr{L}_2(\phi, \psi)$ splits into a renormalized piece and counterterm (c.t.) piece:

$$\mathscr{L}_{2}(\phi,\psi) = iZ_{\psi}\bar{\psi}\partial\psi + \frac{1}{2}Z_{G_{S}}Z_{\psi}^{2}G_{S}\mu^{2\epsilon}\bar{\psi}\psi\bar{\psi}\psi - Z_{y_{\phi}}Z_{\psi}Z_{\phi}^{1/2}y_{\phi}\mu^{\epsilon}\bar{\psi}\psi\phi + \cdots$$

$$= i\bar{\psi}\partial\psi + \frac{1}{2}G_{S}\mu^{2\epsilon}\bar{\psi}\psi\bar{\psi}\psi - y_{\phi}\mu^{\epsilon}\bar{\psi}\psi\phi$$

$$+ i[Z_{\psi}-1]\bar{\psi}\partial\psi + \frac{1}{2}[Z_{G_{S}}Z_{\psi}^{2}-1]G_{S}\mu^{2\epsilon}\bar{\psi}\psi\bar{\psi}\psi$$

$$- [Z_{y_{\phi}}Z_{\psi}Z_{\phi}^{1/2}-1]y_{\phi}\mu^{\epsilon}\bar{\psi}\psi\phi + \cdots$$

$$(5)$$

c.t.: determined by renormalization conditions, and thus scheme dependent.

In MS, they contain only UV divergent terms.

ヘロン 人間 とくほ とくほ とう

RG running at one loop

RG running at one loop – Example 1

To compute RG equations (RGE) for G_S, start from the fact that bare quantities are independent of μ:

$$0 = \mu \frac{dG_{S}^{0}}{d\mu} = Z_{G_{S}} \mu^{2\varepsilon} \mu \frac{dG_{S}}{d\mu} + \mu^{2\varepsilon} G_{S} \mu \frac{dZ_{G_{S}}}{d\mu} + 2\varepsilon Z_{G_{S}} \mu^{2\varepsilon} G_{S}$$
(6)

$$\Rightarrow \quad \beta_{G_{S}} = \mu \frac{dG_{S}}{d\mu} = -G_{S} \mu \frac{d\ln Z_{G_{S}}}{d\mu} - 2\varepsilon G_{S}$$
(7)

In mass-independent schemes, μ dependence enters only through couplings.

■ Here we are computing RGE for G_S due to Yukawa coupling y_{ϕ} of ϕ with ψ , i.e.,

$$\mu \frac{d \ln Z_{G_S}}{d\mu} \sim \mu \frac{dy_{\phi}}{d\mu} = \beta_{y_{\phi}}$$
(8)

RG running at one loop

RG running at one loop – Example 1

To compute RG equations (RGE) for G_s , start from the fact that bare quantities are independent of μ :

$$0 = \mu \frac{dG_{S}^{0}}{d\mu} = Z_{G_{S}} \mu^{2\varepsilon} \mu \frac{dG_{S}}{d\mu} + \mu^{2\varepsilon} G_{S} \mu \frac{dZ_{G_{S}}}{d\mu} + 2\varepsilon Z_{G_{S}} \mu^{2\varepsilon} G_{S}$$
(6)

$$\Rightarrow \quad \beta_{G_{S}} = \mu \frac{dG_{S}}{d\mu} = -G_{S} \mu \frac{d\ln Z_{G_{S}}}{d\mu} - 2\varepsilon G_{S}$$
(7)

In mass-independent schemes, μ dependence enters only through couplings.

Here we are computing RGE for G_S due to Yukawa coupling y_{ϕ} of ϕ with ψ , i.e.,

$$\mu \frac{d \ln Z_{G_{S}}}{d\mu} \propto \mu \frac{dy_{\phi}}{d\mu} = \beta_{y_{\phi}}$$
(8)

イロト イポト イヨト イヨト

э

RG running at one loop

RG running at one loop – Example 1

• $\beta_{y_{\phi}}$ can be manipulated as for $\beta_{G_{S}}$:

$$0 = \mu \frac{dy_{\phi}^{0}}{d\mu} = Z_{y_{\phi}} \mu^{\varepsilon} \mu \frac{dy_{\phi}}{d\mu} + \mu^{\varepsilon} y_{\phi} \mu \frac{dZ_{y_{\phi}}}{d\mu} + \varepsilon Z_{y_{\phi}} \mu^{\varepsilon} y_{\phi}$$
(9)

$$\Rightarrow \quad \beta_{y_{\phi}} = -y_{\phi} \mu \frac{d \ln Z_{y_{\phi}}}{d\mu} - \varepsilon y_{\phi} \tag{10}$$

Again, the first term is of higher order than the second term, and can be dropped for our purpose here.

In summary, the leading term is

$$\beta_{G_S} = -G_S \mu \frac{dy_\phi}{d\mu} \frac{d\ln Z_{G_S}}{dy_\phi} - 2\varepsilon G_S = -G_S \beta_{y_\phi} \frac{d\ln Z_{G_S}}{dy_\phi} - 2\varepsilon G_S$$
(11)

$$\Rightarrow \quad \beta_{G_{S}} = \lim_{\varepsilon \to 0} \left[-G_{S}(-\varepsilon y_{\phi}) \frac{d \ln Z_{G_{S}}}{d y_{\phi}} \right]$$
(12)

Thus, to get RG running of G_S , we have to determine Z

< □ > < 同 > < 回 >

RG running at one loop

RG running at one loop – Example 1

• $\beta_{y_{\phi}}$ can be manipulated as for $\beta_{G_{S}}$:

$$0 = \mu \frac{dy_{\phi}^{0}}{d\mu} = Z_{y_{\phi}} \mu^{\varepsilon} \mu \frac{dy_{\phi}}{d\mu} + \mu^{\varepsilon} y_{\phi} \mu \frac{dZ_{y_{\phi}}}{d\mu} + \varepsilon Z_{y_{\phi}} \mu^{\varepsilon} y_{\phi}$$
(9)

$$\Rightarrow \quad \beta_{y_{\phi}} = -y_{\phi} \mu \frac{d \ln Z_{y_{\phi}}}{d\mu} - \varepsilon y_{\phi} \tag{10}$$

Again, the first term is of higher order than the second term, and can be dropped for our purpose here.

In summary, the leading term is

$$\beta_{G_{S}} = -G_{S}\mu \frac{dy_{\phi}}{d\mu} \frac{d\ln Z_{G_{S}}}{dy_{\phi}} - 2\varepsilon G_{S} = -G_{S}\beta_{y_{\phi}} \frac{d\ln Z_{G_{S}}}{dy_{\phi}} - 2\varepsilon G_{S}$$
(11)

$$\Rightarrow \quad \beta_{G_{S}} = \lim_{\varepsilon \to 0} \left[-G_{S}(-\varepsilon y_{\phi}) \frac{d \ln Z_{G_{S}}}{dy_{\phi}} \right]$$
(12)

Thus, to get RG running of G_S , we have to determine Z_{G_S} .

< 🗇 🖂 🗧

RG running at one loop

RG running at one loop – Example 1

Cautions:

Renormalized quantities are regular in the limit $\epsilon \to 0$. The limit can only be properly taken in the end of calculation.

But to get Z_{G_s} , we also need Z_{ψ} . Easiest thing first: Z_{ψ} .

We need the term $\propto p$:

diagram =
$$\int \frac{d^d k}{(2\pi)^d} (-iy_{\phi}\mu^{\varepsilon}) \frac{i}{k+\phi} (-iy_{\phi}\mu^{\varepsilon}) \frac{i}{k^2 - m^2}$$
$$= y_{\phi}^2 \mu^{2\varepsilon} \int \frac{d^d k}{(2\pi)^d} \frac{k+\phi}{(k+\rho)^2 (k^2 - m^2)}$$

イロト イ押ト イヨト イヨト

э.

RG running at one loop

RG running at one loop – Example 1

Cautions:

Renormalized quantities are regular in the limit $\epsilon \to 0.$ The limit can only be properly taken in the end of calculation.

But to get Z_{G_s} , we also need Z_{ψ} . Easiest thing first: Z_{ψ} .

$$p' k + p' \psi$$

We need the term $\propto p$:

diagram =
$$\int \frac{d^d k}{(2\pi)^d} (-iy_{\phi}\mu^{\varepsilon}) \frac{i}{\not{k}+\not{p}} (-iy_{\phi}\mu^{\varepsilon}) \frac{i}{k^2-m^2}$$
$$= y_{\phi}^2 \mu^{2\varepsilon} \int \frac{d^d k}{(2\pi)^d} \frac{\not{k}+\not{p}}{(k+\rho)^2(k^2-m^2)}$$

イロト イポト イヨト イヨト

э

RG running at one loop

RG running at one loop – Example 1

Use Feynman parameter x to combine the two denominators:

$$\frac{1}{(k+p)^2(k^2-m^2)} = \int_0^1 dx \frac{1}{[x(k+p)^2+(1-x)(k^2-m^2)]^2}$$
$$= \int_0^1 dx \frac{1}{[\ell^2-\Delta+i0^+]^2}, \ \ell = k+xp, \ \Delta = m^2(1-x)-p^2x(1-x)$$

Replace $k = \ell - xp$:

diagram =
$$y_{\phi}^{2} \mu^{2\varepsilon} \int_{0}^{1} dx \int \frac{d^{d}\ell}{(2\pi)^{d}} \frac{\ell \ell + (1-x)p}{[\ell^{2} - \Delta + i0^{+}]^{2}}$$

= $py_{\phi}^{2} \int_{0}^{1} dx (1-x) \mu^{2\varepsilon} \int \frac{d^{d}\ell}{(2\pi)^{d}} \frac{1}{[\ell^{2} - \Delta + i0^{+}]^{2}}$

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

= 990

RG running at one loop

RG running at one loop – Example 1

Use standard loop integrals in $d = 4 - 2\varepsilon$ dims:

$$\mu^{2\varepsilon} \int \frac{d^{d}\ell}{(2\pi)^{d}} \frac{1}{[\ell^{2} - \Delta + i0^{+}]^{2}} = \frac{i}{(4\pi)^{2}} \left[\frac{4\pi\mu^{2}}{\Delta}\right]^{\varepsilon} \Gamma(\varepsilon)$$
$$= \frac{i}{(4\pi)^{2}} \left[\frac{1}{\varepsilon} - \gamma_{\mathsf{E}} + \ln\frac{4\pi\mu^{2}}{\Delta} + O(\varepsilon)\right]$$
(13)

We finally get

diagram =
$$py_{\phi}^2 \frac{i}{(4\pi)^2} \frac{1}{\varepsilon} \int_0^1 dx \ (1-x) + \text{finite} = py_{\phi}^2 \frac{i}{(4\pi)^2} \frac{1}{\varepsilon} \frac{1}{2} + \text{finite}$$

Requiring the c.t. diagram

$$p = i(Z_{\psi} - 1)p$$

to cancel the UV divergent term (MS), we obtain

$$i(Z_{\psi}-1)p + p y_{\phi}^{2} \frac{i}{(4\pi)^{2}} \frac{1}{\varepsilon} \frac{1}{2} = 0 \Rightarrow (Z_{\psi}-1) = -\frac{1}{2} \frac{y_{\phi}^{2}}{(4\pi)^{2}} \frac{1}{\varepsilon}$$
(14)

RG running at one loop

RG running at one loop – Example 1

■ Focus on \(\overline{\phi}\) \(\verline{\phi}\) \(\verline{\phi}\) \(\phi\) \(

- These diagrams are at most logarithmically divergent.
- We are interested only in divergent terms which are independent of external momenta.
 - We can thus set $p_i = 0$.

RG running at one loop

RG running at one loop – Example 1

Focus on ψ
(p₃)ψ(p₁)ψ
(p₄)ψ(p₂), ignoring trivial crossing for both one-loop diagrams and c.t.

- These diagrams are at most logarithmically divergent.
- We are interested only in divergent terms which are independent of external momenta.
 - We can thus set $p_i = 0$.

RG running at one loop

RG running at one loop – Example 1

Focus on ψ
(p₃)ψ(p₁)ψ(p₄)ψ(p₂), ignoring trivial crossing for both one-loop diagrams and c.t.

These diagrams are at most logarithmically divergent.

We are interested only in divergent terms which are independent of external momenta.

We can thus set $p_i = 0$.

RG running at one loop

RG running at one loop – Example 1

- These diagrams are at most logarithmically divergent.
- We are interested only in divergent terms which are independent of external momenta.
 - We can thus set $p_i = 0$.

RG running at one loop

RG running at one loop – Example 1

The diagrams give

diagrams b and c cancel each other!

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

3

RG running at one loop

RG running at one loop – Example 1

If diagrams b and c did not cancel, they would induce a new structure

 $\bar{u}_3 \gamma_\mu u_1 \ \bar{u}_4 \gamma^\mu u_2$

corresponding to the effective int. involving the dim-6 operator:

$$\mathscr{O}_{V} = \bar{\psi}\gamma_{\mu}\psi\bar{\psi}\gamma^{\mu}\psi \tag{18}$$

This is called mixing of operators under renormalization.

Back to the issue. UV div in diag abc is required to cancel c.t.:

c.t. diagram for $\bar{\psi}\psi\bar{\psi}\psi = i(Z_{G_s}Z_{\psi}^2 - 1)G_S\mu^{2\varepsilon}(\bar{u}_3u_1\bar{u}_4u_2) + \text{crossing}$ (19)

$$\Rightarrow \quad i(Z_{G_s}Z_{\psi}^2 - 1)G_S\mu^{2\varepsilon} + 2iG_S\mu^{2\varepsilon}\frac{-Y_{\phi}^2}{(4\pi)^2}\frac{1}{\varepsilon} = 0$$

$$\Rightarrow \quad (Z_{G_s}Z_{\psi}^2 - 1) = 2\frac{y_{\phi}^2}{(4\pi)^2}\frac{1}{\varepsilon}$$
(20)

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

RG running at one loop

RG running at one loop – Example 1

If diagrams b and c did not cancel, they would induce a new structure

 $\bar{u}_3 \gamma_\mu u_1 \ \bar{u}_4 \gamma^\mu u_2$

corresponding to the effective int. involving the dim-6 operator:

$$\mathscr{O}_{V} = \bar{\psi}\gamma_{\mu}\psi\bar{\psi}\gamma^{\mu}\psi \tag{18}$$

This is called mixing of operators under renormalization.

Back to the issue. UV div in diag abc is required to cancel c.t.:

c.t. diagram for $\bar{\psi}\psi\bar{\psi}\psi = i(Z_{G_s}Z_{\psi}^2 - 1)G_s\mu^{2\varepsilon}(\bar{u}_3u_1\bar{u}_4u_2) + \text{crossing}$ (19)

$$\Rightarrow \quad i(Z_{G_{S}}Z_{\psi}^{2}-1)G_{S}\mu^{2\varepsilon}+2iG_{S}\mu^{2\varepsilon}\frac{-Y_{\phi}^{2}}{(4\pi)^{2}}\frac{1}{\varepsilon}=0$$

$$\Rightarrow \quad (Z_{G_{S}}Z_{\psi}^{2}-1)=2\frac{Y_{\phi}^{2}}{(4\pi)^{2}}\frac{1}{\varepsilon}$$
(20)

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

RG running at one loop

RG running at one loop – Example 1

■ In perturbation theory Z_{-1} is considered small though it may contain $1/\varepsilon$, because $\varepsilon \rightarrow 0$ is taken only in the end of calculation.

$$Z_{G_{s}} = \left[1 + 2\frac{y_{\phi}^{2}}{(4\pi)^{2}}\frac{1}{\varepsilon}\right] \left[1 + (Z_{\psi} - 1)\right]^{-2}$$

$$\approx 1 + 2\frac{y_{\phi}^{2}}{(4\pi)^{2}}\frac{1}{\varepsilon} - 2(Z_{\psi} - 1) = 1 + \frac{3y_{\phi}^{2}}{(4\pi)^{2}}\frac{1}{\varepsilon}$$

After this lengthy calculation, we obtain at one-loop level:

$$\beta_{G_S} = G_S \lim_{\varepsilon \to 0} \left[\varepsilon y_{\phi} \frac{d \ln Z_{G_S}}{dy_{\phi}} \right] \approx G_S \lim_{\varepsilon \to 0} \left[\varepsilon y_{\phi} \frac{d Z_{G_S}}{dy_{\phi}} \right] = G_S \frac{6y_{\phi}^2}{(4\pi)^2}$$
(2)

and RGE for G_S exact to one loop becomes

$$\mu \frac{dG_S}{d\mu} = \frac{6y_\phi^2}{(4\pi)^2} G_S \tag{23}$$

(21)

RG running at one loop

RG running at one loop – Example 1

■ In perturbation theory Z_{-1} is considered small though it may contain $1/\varepsilon$, because $\varepsilon \rightarrow 0$ is taken only in the end of calculation.

$$Z_{G_{s}} = \left[1 + 2\frac{y_{\phi}^{2}}{(4\pi)^{2}}\frac{1}{\varepsilon}\right] \left[1 + (Z_{\psi} - 1)\right]^{-2}$$

$$\approx 1 + 2\frac{y_{\phi}^{2}}{(4\pi)^{2}}\frac{1}{\varepsilon} - 2(Z_{\psi} - 1) = 1 + \frac{3y_{\phi}^{2}}{(4\pi)^{2}}\frac{1}{\varepsilon}$$
(21)

After this lengthy calculation, we obtain at one-loop level:

$$\beta_{G_{S}} = G_{S} \lim_{\varepsilon \to 0} \left[\varepsilon y_{\phi} \frac{d \ln Z_{G_{S}}}{d y_{\phi}} \right] \approx G_{S} \lim_{\varepsilon \to 0} \left[\varepsilon y_{\phi} \frac{d Z_{G_{S}}}{d y_{\phi}} \right] = G_{S} \frac{6 y_{\phi}^{2}}{(4\pi)^{2}}$$
(22)

and RGE for G_S exact to one loop becomes

$$\mu \frac{dG_{\rm S}}{d\mu} = \frac{6y_{\phi}^2}{(4\pi)^2} G_{\rm S} \tag{23}$$

<ロト < 同ト < 回ト < 回ト = 三

RG running at one loop

RG running at one loop – Example 1

Are we done?

Not really. There is also μ dependence in coupling y_{ϕ} .

If we ignore it together with μ dependence in G_S on rhs, we get in the so-called leading log approximation:

$$G_{\rm S}(\mu) - G_{\rm S}(M) = \frac{6y_{\phi}^2}{(4\pi)^2} G_{\rm S}(M) \ln \frac{\mu}{M}$$
(24)

We can do better by including μ dependence on rhs of RGE.
 For this we need the β function for y_φ, again due to y_φ interaction.
 Exercise – verify that

$$y_{\phi} = 5 rac{y_{\phi}^3}{(4\pi)^2}$$

RG running at one loop

RG running at one loop – Example 1

Are we done?

Not really. There is also μ dependence in coupling y_{ϕ} .

If we ignore it together with μ dependence in G_S on rhs, we get in the so-called leading log approximation:

$$G_{\rm S}(\mu) - G_{\rm S}(M) = \frac{6y_{\phi}^2}{(4\pi)^2} G_{\rm S}(M) \ln \frac{\mu}{M}$$
(24)

• We can do better by including μ dependence on rhs of RGE. For this we need the β function for y_{ϕ} , again due to y_{ϕ} interaction.

Exercise – verify that

$$V_{\phi} = 5 rac{Y_{\phi}^3}{(4\pi)^2}$$

< □ > < □ > < □ > < □ > < □ > < □ >

RG running at one loop

RG running at one loop – Example 1

Are we done?

Not really. There is also μ dependence in coupling y_{ϕ} .

If we ignore it together with μ dependence in G_S on rhs, we get in the so-called leading log approximation:

$$G_{\rm S}(\mu) - G_{\rm S}(M) = \frac{6y_{\phi}^2}{(4\pi)^2} G_{\rm S}(M) \ln \frac{\mu}{M}$$
(24)

We can do better by including μ dependence on rhs of RGE.
 For this we need the β function for y_φ, again due to y_φ interaction.
 Exercise – verify that

$$\beta_{y_{\phi}} = 5 \frac{y_{\phi}^3}{(4\pi)^2} \tag{25}$$

RG running at one loop

RG running at one loop – Example 1

Hints – Find first

$$Z_{\phi} - 1 = -2 \frac{y_{\phi}^2}{(4\pi)^2} \frac{1}{\epsilon}, \ Z_{y_{\phi}} Z_{\psi} Z_{\phi}^{1/2} - 1 = \frac{y_{\phi}^2}{(4\pi)^2} \frac{1}{\epsilon} \Rightarrow \quad Z_{y_{\phi}} - 1 = \frac{5}{2} \frac{y_{\phi}^2}{(4\pi)^2} \frac{1}{\epsilon}$$

Then, proceed as follows

$$\beta_{Y_{\phi}} = -y_{\phi} \mu \frac{d \ln Z_{Y_{\phi}}}{d\mu} - \varepsilon y_{\phi} = -y_{\phi} \beta_{Y_{\phi}} \frac{d \ln Z_{Y_{\phi}}}{dy_{\phi}} - \varepsilon y_{\phi}$$

$$\Rightarrow \quad \beta_{Y_{\phi}} = \lim_{\varepsilon \to 0} (-y_{\phi})(-\varepsilon y_{\phi}) \frac{d \ln Z_{Y_{\phi}}}{dy_{\phi}} = 5 \frac{y_{\phi}^{3}}{(4\pi)^{2}}$$
(26)

Important –

Everything is manipulated for $\varepsilon \neq 0$ and in the spirit of pert. theory Only at the end of the day we take $\varepsilon \rightarrow 0$ for renormalizaed quantities

RG running at one loop

RG running at one loop – Example 1

Hints – Find first

$$Z_{\phi} - 1 = -2 \frac{y_{\phi}^2}{(4\pi)^2} \frac{1}{\epsilon}, \ Z_{y_{\phi}} Z_{\psi} Z_{\phi}^{1/2} - 1 = \frac{y_{\phi}^2}{(4\pi)^2} \frac{1}{\epsilon} \Rightarrow \quad Z_{y_{\phi}} - 1 = \frac{5}{2} \frac{y_{\phi}^2}{(4\pi)^2} \frac{1}{\epsilon}$$

Then, proceed as follows

$$\beta_{Y_{\phi}} = -y_{\phi} \mu \frac{d \ln Z_{Y_{\phi}}}{d\mu} - \varepsilon y_{\phi} = -y_{\phi} \beta_{Y_{\phi}} \frac{d \ln Z_{Y_{\phi}}}{dy_{\phi}} - \varepsilon y_{\phi}$$

$$\Rightarrow \quad \beta_{Y_{\phi}} = \lim_{\varepsilon \to 0} (-y_{\phi}) (-\varepsilon y_{\phi}) \frac{d \ln Z_{Y_{\phi}}}{dy_{\phi}} = 5 \frac{y_{\phi}^{3}}{(4\pi)^{2}}$$
(26)

Important –

Everything is manipulated for $\varepsilon \neq 0$ and in the spirit of pert. theory Only at the end of the day we take $\varepsilon \rightarrow 0$ for renormalizaed quantities.

・ロン ・聞と ・ ヨン・

э

RG running at one loop

RG running at one loop – Example 1

Comments:

1. β functions depend on renormalization schemes applied, mass dependent or independent.

- In mass-dependent schemes βs vary smoothly in scale. See A. Manohar, arXiv:hep-ph/9606222.
- In mass-independent schemes βs jump when crossing threshold of a heavy particle which is to be integrated out.
- Although physical results are independent of schemes, mass-independent ones better suit the need of modern QFT: simpler topology of diagrams though more divergent; only UV divergence required for *β*s vs finite terms required in mass-dependent schemes.
RG running at one loop

RG running at one loop – Example 1

Comments:

1. β functions depend on renormalization schemes applied, mass dependent or independent.

- In mass-dependent schemes βs vary smoothly in scale. See A. Manohar, arXiv:hep-ph/9606222.
- In mass-independent schemes βs jump when crossing threshold of a heavy particle which is to be integrated out.
- Although physical results are independent of schemes, mass-independent ones better suit the need of modern QFT: simpler topology of diagrams though more divergent; only UV divergence required for βs vs finite terms required in mass-dependent schemes.

RG running at one loop

RG running at one loop – Example 1

Comments:

1. β functions depend on renormalization schemes applied, mass dependent or independent.

- In mass-dependent schemes βs vary smoothly in scale. See A. Manohar, arXiv:hep-ph/9606222.
- In mass-independent schemes βs jump when crossing threshold of a heavy particle which is to be integrated out.
- Although physical results are independent of schemes, mass-independent ones better suit the need of modern QFT: simpler topology of diagrams though more divergent; only UV divergence required for βs vs finite terms required in mass-dependent schemes.

・ロン ・聞と ・ 聞と ・ 聞と

RG running at one loop

RG running at one loop – Example 1

2. There is no essential difference in computing RGE between renormalizable and nonrenormalizable couplings. – EFTs behave at low energies as well as renormalizable ones!

Back to our main issue. RG running of 'effective coupling' G_s can be better done by including RG running of 'fundamental coupling' y₀:

$$\left(\begin{array}{c} \mu \frac{dG_S}{d\mu} = 6 \frac{y_{\phi}^2}{(4\pi)^2} G_S \\ \mu \frac{dy_{\phi}}{d\mu} = 5 \frac{y_{\phi}^3}{(4\pi)^2} \end{array} \right)$$

The above is very in QFT. We solve more generally the following:

$$\begin{cases} \mu \frac{d \ln G}{d\mu} = ag^2 \\ \mu \frac{dg^2}{d\mu} = b(g^2)^2 \end{cases} \qquad \left(G \to G_S, \ g \to y_{\phi}; \ a \to \frac{6}{(4\pi)^2}, \ b \to \frac{10}{(4\pi)^2} \right) \tag{27}$$

RG running at one loop

RG running at one loop – Example 1

2. There is no essential difference in computing RGE between renormalizable and nonrenormalizable couplings. – EFTs behave at low energies as well as renormalizable ones!

Back to our main issue. RG running of 'effective coupling' G_s can be better done by including RG running of 'fundamental coupling' y_{ϕ} :

$$\left(\begin{array}{c} \mu \frac{dG_S}{d\mu} = 6 \frac{y_{\phi}^2}{(4\pi)^2} G_S \\ \mu \frac{dy_{\phi}}{d\mu} = 5 \frac{y_{\phi}^3}{(4\pi)^2} \end{array} \right)$$

The above is very in QFT. We solve more generally the following:

$$\begin{cases} \mu \frac{d \ln G}{d\mu} = ag^2 \\ \mu \frac{dg^2}{d\mu} = b(g^2)^2 \end{cases} \qquad \left(G \to G_S, \ g \to y_\phi; \ a \to \frac{6}{(4\pi)^2}, \ b \to \frac{10}{(4\pi)^2} \right) \tag{27}$$

RG running at one loop

RG running at one loop – Example 1

Take their ratio:

$$\frac{d\ln G}{dg^2} = \frac{a}{b} \frac{1}{g^2} \Rightarrow d\ln G = \frac{a}{b} d\ln(g^2)$$
$$\Rightarrow \quad \ln \frac{G(\mu_1)}{G(\mu_2)} = \frac{a}{b} \ln \frac{g^2(\mu_1)}{g^2(\mu_2)} \Rightarrow \frac{G(\mu_1)}{G(\mu_2)} = \left[\frac{g^2(\mu_1)}{g^2(\mu_2)}\right]^{a/b}$$

Summation of leading log to all orders!

Exercise – verify that expansion of the above to leading order in $g^2(\mu_2)\ln(\mu_1/\mu_2)$ recovers the previous result in leading-log approximation. **Hint** – first solve $g^2(\mu)$ from its RGE.

イロト イ押ト イヨト イヨト

(28)

э

RG running at one loop

RG running at one loop – Example 1

Take their ratio:

$$\frac{d \ln G}{dg^2} = \frac{a}{b} \frac{1}{g^2} \Rightarrow d \ln G = \frac{a}{b} d \ln(g^2)$$

$$\Rightarrow \quad \ln \frac{G(\mu_1)}{G(\mu_2)} = \frac{a}{b} \ln \frac{g^2(\mu_1)}{g^2(\mu_2)} \Rightarrow \frac{G(\mu_1)}{G(\mu_2)} = \left[\frac{g^2(\mu_1)}{g^2(\mu_2)}\right]^{a/b}$$
(28)

Summation of leading log to all orders!

=

Exercise – verify that expansion of the above to leading order in $g^2(\mu_2)\ln(\mu_1/\mu_2)$ recovers the previous result in leading-log approximation. Hint – first solve $g^2(\mu)$ from its RGE.

3

RG running at one loop

RG running at one loop – Example 2

Example 2: Mixing of operators under renormalization

Operators of same dim and symmetry can mix under renormalization.

To see this in a simple framework, consider the EFT of ϕ , ψ :

$$\mathscr{L}_{\mathsf{EFT}}(\phi,\psi) = i\bar{\psi}\partial\psi + \frac{1}{2}G_V\mathcal{O}_V + \frac{1}{2}(\partial_\mu\phi)^2 - \frac{1}{2}m^2\phi^2 - y_\phi\bar{\psi}\psi\phi + \cdots, \qquad (29)$$
$$\mathcal{O}_V = \bar{\psi}\gamma^\mu\psi\bar{\psi}\gamma_\mu\psi, \qquad (30)$$

where the effective interaction $G_V \mathcal{O}_V / 2$ may have arisen from integrating out a heavy vector boson of mass *M* similarly to the case of 4-Fermi weak interactions.

Consider RG running of G_V due to y_{ϕ} coupling.

<ロト < 同ト < 回ト < 回ト = 三

RG running at one loop

RG running at one loop – Example 2

Example 2: Mixing of operators under renormalization

Operators of same dim and symmetry can mix under renormalization.

To see this in a simple framework, consider the EFT of ϕ , ψ :

$$\mathscr{L}_{\mathsf{EFT}}(\phi,\psi) = i\bar{\psi}\partial\psi + \frac{1}{2}G_V\mathcal{O}_V + \frac{1}{2}(\partial_\mu\phi)^2 - \frac{1}{2}m^2\phi^2 - y_\phi\bar{\psi}\psi\phi + \cdots, \qquad (29)$$
$$\mathcal{O}_V = \bar{\psi}\gamma^\mu\psi\bar{\psi}\gamma_\mu\psi, \qquad (30)$$

where the effective interaction $G_V \mathcal{O}_V / 2$ may have arisen from integrating out a heavy vector boson of mass *M* similarly to the case of 4-Fermi weak interactions.

Consider RG running of G_V due to y_{ϕ} coupling.

ヘロン 人間 とくほ とくほ とう

3

RG running at one loop

RG running at one loop – Example 2

It turns out that its running is not closed! It induces at one loop a new interaction proportional to

$$\mathscr{O}_{\mathsf{T}} = \bar{\psi}\sigma^{\mu\nu}\psi\bar{\psi}\sigma_{\mu\nu}\psi \tag{31}$$

In principle other forms can also join mixing at higher orders.
 We work at one loop where O_V and O_T are closed under renor.

Consistency therefore requires that we include both operators:

$$\mathscr{L}_{\mathsf{EFT}}(\phi,\psi) = i\bar{\psi}\partial\psi + \frac{1}{2}G_V\mathcal{O}_V + \frac{1}{2}G_T\mathcal{O}_T + \frac{1}{2}(\partial_\mu\phi)^2 - \frac{1}{2}m^2\phi^2 - y_\phi\bar{\psi}\psi\phi + \cdots, (32)$$

because we generally have $G_T(\mu)G_T(\mu) \neq 0$ even if $G_T(M) = 0$.

RG running at one loop

RG running at one loop – Example 2

It turns out that its running is not closed! It induces at one loop a new interaction proportional to

$$\mathscr{O}_{\mathsf{T}} = \bar{\psi}\sigma^{\mu\nu}\psi\bar{\psi}\sigma_{\mu\nu}\psi \tag{31}$$

- In principle other forms can also join mixing at higher orders. We work at one loop where O_V and O_T are closed under renor.
- Consistency therefore requires that we include both operators:

$$\mathscr{L}_{\mathsf{EFT}}(\phi,\psi) = i\bar{\psi}\partial\psi + \frac{1}{2}\mathbf{G}_{\mathbf{V}}\partial_{\mathbf{V}} + \frac{1}{2}\mathbf{G}_{\mathbf{T}}\partial_{\mathbf{T}} + \frac{1}{2}(\partial_{\mu}\phi)^2 - \frac{1}{2}m^2\phi^2 - y_{\phi}\bar{\psi}\psi\phi + \cdots, (32)$$

because we generally have $G_T(\mu)G_T(\mu) \neq 0$ even if $G_T(M) = 0$.

RG running at one loop

RG running at one loop – Example 2

It turns out that its running is not closed! It induces at one loop a new interaction proportional to

$$\mathscr{O}_{\mathsf{T}} = \bar{\psi}\sigma^{\mu\nu}\psi\bar{\psi}\sigma_{\mu\nu}\psi \tag{31}$$

- In principle other forms can also join mixing at higher orders. We work at one loop where O_V and O_T are closed under renor.
- Consistency therefore requires that we include both operators:

$$\mathscr{L}_{\mathsf{EFT}}(\phi,\psi) = i\bar{\psi}\partial\psi + \frac{1}{2}G_V \mathcal{O}_V + \frac{1}{2}G_T \mathcal{O}_T + \frac{1}{2}(\partial_\mu\phi)^2 - \frac{1}{2}m^2\phi^2 - y_\phi\bar{\psi}\psi\phi + \cdots, (32)$$

because we generally have $G_T(\mu)G_T(\mu) \neq 0$ even if $G_T(M) = 0$.

RG running at one loop

RG running at one loop – Example 2

Introduce c.t. as before to both interactions:

$$\mathscr{L}_{\mathsf{EFT}}(\phi,\psi) \supset +\frac{1}{2} \left[Z_{G_V} Z_{\psi}^2 - 1 \right] G_V \mu^{2\varepsilon} \mathscr{O}_V + \frac{1}{2} \left[Z_{G_T} Z_{\psi}^2 - 1 \right] G_T \mu^{2\varepsilon} \mathscr{O}_T$$
(33)

 Z_{ψ} was known previously.

c.t. to cancel UV div with one insertion of that can induce an $\begin{bmatrix} Z_{G_V} Z_{\Psi}^2 - 1 \end{bmatrix} G_V \mu^{2\epsilon}$ either \mathscr{O}_V or \mathscr{O}_T \mathscr{O}_V $\begin{bmatrix} Z_{G_T} Z_{\Psi}^2 - 1 \end{bmatrix} G_T \mu^{2\epsilon}$ either \mathscr{O}_V or \mathscr{O}_T \mathscr{O}_T

Insertion of $G_V \mathcal{O}_V$:

RG running at one loop

RG running at one loop – Example 2

We set $p_i = 0$, and it is not necessary to include crossing diagrams.

diagram a =
$$2 \times i G_V \mu^{2\varepsilon} \int \frac{d^d k}{(2\pi)^d} \bar{u}_3(-i y_\phi \mu^\varepsilon) \frac{i}{k} \gamma_\mu \frac{i}{k} (-i y_\phi \mu^\varepsilon) u_1 \frac{i}{k^2 - m^2} \bar{u}_4 \gamma^\mu u_2$$

= $-2 G_V \mu^{2\varepsilon} y_\phi^2 (\bar{u}_3 \gamma_\alpha \gamma_\mu \gamma_\beta u_1) (\bar{u}_4 \gamma^\mu u_2) \mu^{2\varepsilon} \int \frac{d^d k}{(2\pi)^d} \frac{k^\alpha k^\beta}{(k^2)^2 (k^2 - m^2)} (34)$

Using symmetric loop integration,

$$\mu^{2\varepsilon} \int \frac{d^{d}k}{(2\pi)^{d}} \frac{k^{\alpha}k^{\beta}}{(k^{2})^{2}(k^{2}-m^{2})} = \frac{1}{d}g^{\alpha\beta}\mu^{2\varepsilon} \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{(k^{2})(k^{2}-m^{2})}$$
$$= \frac{1}{4}g^{\alpha\beta}\frac{i}{(4\pi)^{2}}\frac{1}{\varepsilon} + \text{finite}$$
(35)

and

$$\gamma_{\alpha}\gamma_{\mu}\gamma_{\beta}g^{\alpha\beta} = (2-d)\gamma_{\mu} = (-2+2\varepsilon)\gamma_{\mu}$$
(36)

ヘロト ヘ戸ト ヘヨト ヘヨト

= 990

RG running at one loop

RG running at one loop – Example 2

we have finally

diagram a =
$$-2G_V \mu^{2\varepsilon} y_{\phi}^2 (-2) (\gamma_{\mu} \otimes \gamma^{\mu}) \frac{1}{4} \frac{i}{(4\pi)^2} \frac{1}{\varepsilon} + \text{finite},$$
 (37)

where we denote $(A \otimes B) \equiv \bar{u}_3 A u_1 \bar{u}_4 B u_2$. The other two diagrams are

diagram b =
$$2 \times i G_V \mu^{2\varepsilon} (-i y_{\phi} \mu^{\varepsilon})^2 \int \frac{d^{\alpha} k}{(2\pi)^{\alpha}} \gamma_{\mu} \frac{i}{k} \otimes \gamma^{\mu} \frac{i}{-k} \frac{i}{k^2 - m^2}$$

= $2 G_V \mu^{2\varepsilon} y_{\phi}^2 (\gamma_{\mu} \gamma_{\alpha} \otimes \gamma^{\mu} \gamma^{\beta}) \mu^{2\varepsilon} \int \frac{d^{\alpha} k}{(2\pi)^{\alpha}} \frac{k^{\alpha} k_{\beta}}{(k^2)^2 (k^2 - m^2)}$
= $+2i G_V \mu^{2\varepsilon} y_{\phi}^2 (\gamma_{\mu} \gamma_{\alpha} \otimes \gamma^{\mu} \gamma^{\alpha}) \frac{1}{4} \frac{1}{(4\pi)^2} \frac{1}{\varepsilon} + \text{finite}$ (38)
diagram c = $-2i G_V \mu^{2\varepsilon} y_{\phi}^2 (\gamma_{\alpha} \gamma_{\mu} \otimes \gamma^{\mu} \gamma^{\alpha}) \frac{1}{4} \frac{1}{(4\pi)^2} \frac{1}{\varepsilon} + \text{finite}$ (39)

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

3

RG running at one loop

RG running at one loop – Example 2

It is nice that they sum to a tensor form:

$$(\gamma_{\mu}\gamma_{\alpha}\otimes\gamma^{\mu}\gamma^{\alpha}) - (\gamma_{\alpha}\gamma_{\mu}\otimes\gamma^{\mu}\gamma^{\alpha}) = -i2(\sigma_{\mu\nu}\otimes\gamma^{\mu}\gamma^{\nu}) = -2(\sigma_{\mu\nu}\otimes\sigma^{\mu\nu})$$
(40)

In summary,

diagrams with $C_V \mathcal{O}_V$ inserted

$$= iG_{V}\mu^{2\varepsilon}y_{\phi}^{2}\Big((\gamma_{\mu}\otimes\gamma^{\mu})-(\sigma_{\mu\nu}\otimes\sigma^{\mu\nu})\Big)\frac{1}{(4\pi)^{2}}\frac{1}{\varepsilon}+\text{finite}$$
(41)

Note that mixing of operators takes place.

With an insertion of $G_T \mathcal{O}_T$, the diagrams are similar:

RG running at one loop

RG running at one loop – Example 2

But the algebra is more complicated. The diagrams yield

$$a = 2iG_{T}\mu^{2\varepsilon}y_{\phi}^{2}(-i)^{2}i^{3}\mu^{2\varepsilon}\int \frac{d^{d}k}{(2\pi)^{d}}\frac{1}{k^{2}-m^{2}}\frac{1}{k}\sigma^{\mu\nu}\frac{1}{k}\otimes\sigma_{\mu\nu} = 0, \quad (42)$$

$$b = 2iG_{T}\mu^{2\varepsilon}y_{\phi}^{2}(-i)^{2}i^{3}\mu^{2\varepsilon}\int \frac{d^{d}k}{(2\pi)^{d}}\frac{1}{k^{2}-m^{2}}\sigma^{\mu\nu}\frac{1}{k}\otimes\sigma_{\mu\nu}\frac{1}{-k}$$

$$= +2G_{T}\mu^{2\varepsilon}y_{\phi}^{2}\sigma^{\mu\nu}\gamma^{\alpha}\otimes\sigma_{\mu\nu}\gamma_{\alpha}\frac{i}{(4\pi)^{2}}\frac{1}{4}\frac{1}{\varepsilon} + \text{finite}, \quad (43)$$

$$c = 2iG_{T}\mu^{2\varepsilon}y_{\phi}^{2}(-i)^{2}i^{3}\mu^{2\varepsilon}\int \frac{d^{d}k}{(2\pi)^{d}}\frac{1}{k^{2}-m^{2}}\frac{1}{k}\sigma^{\mu\nu}\otimes\sigma_{\mu\nu}\frac{1}{k}$$

$$= -2G_{T}\mu^{2\varepsilon}y_{\phi}^{2}\gamma^{\alpha}\sigma^{\mu\nu}\otimes\sigma_{\mu\nu}\gamma_{\alpha}\frac{i}{(4\pi)^{2}}\frac{1}{4}\frac{1}{\varepsilon} + \text{finite} \quad (44)$$

The sum of the γ matrices is, $[\sigma^{\mu\nu}, \gamma^{\alpha}] \otimes \sigma_{\mu\nu} \gamma_{\alpha}$.

ヘロト 人間 とくほ とくほ とう

= 990

RG running at one loop

RG running at one loop – Example 2

Using the relations

$$\begin{aligned} \gamma_{\mu}\gamma_{\nu}\gamma_{\alpha} &= g_{\mu\nu}\gamma_{\alpha} + g_{\nu\alpha}\gamma_{\mu} - g_{\mu\alpha}\gamma_{\nu} - i\varepsilon_{\mu\nu\alpha\beta}\gamma_{5}\gamma^{\beta}, \\ \gamma_{5} &= i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}, \ \varepsilon^{0123} = -\varepsilon_{0123} = +1, \end{aligned}$$

$$\tag{45}$$

we compute as follows

$$\sigma_{\mu\nu}\gamma_{\alpha} = i\left(+g_{\nu\alpha}\gamma_{\mu}-g_{\mu\alpha}\gamma_{\nu}-i\varepsilon_{\mu\nu\alpha\beta}\gamma_{5}\gamma^{\beta}\right)$$
(46)

$$\gamma_{\alpha}\sigma_{\mu\nu} = i\left(-g_{\nu\alpha}\gamma_{\mu} + g_{\mu\alpha}\gamma_{\nu} - i\varepsilon_{\mu\nu\alpha\beta}\gamma_{5}\gamma^{\beta}\right)$$
(47)

$$[\sigma_{\mu\nu},\gamma_{\alpha}] = i2(g_{\nu\alpha}\gamma_{\mu}-g_{\mu\alpha}\gamma_{\nu})$$
(48)

$$\begin{bmatrix} \sigma_{\mu\nu}, \gamma_{\alpha} \end{bmatrix} \otimes \sigma^{\mu\nu} \gamma^{\alpha} = i2(g_{\nu\alpha}\gamma_{\mu} - g_{\mu\alpha}\gamma_{\nu}) \otimes i\gamma^{\mu}\gamma^{\nu}\gamma^{\alpha} = -12\gamma^{\mu} \otimes \gamma_{\mu}$$
(49)

In summary,

diagrams with
$$C_T \mathscr{O}_T$$
 inserted = $iG_T \mu^{2\varepsilon} y_{\phi}^2 (\gamma_{\mu} \otimes \gamma^{\mu}) \frac{-6}{(4\pi)^2} \frac{1}{\varepsilon} + \text{finite}$ (50)

・ロト ・聞 ト ・ ヨト ・ ヨトー

∃ ∽ へ へ

0

RG running at one loop

RG running at one loop – Example 2

These divergences are cancelled by c.t.:

$$(\gamma_{\mu} \otimes \gamma^{\mu}) \qquad 0 = i[Z_{G_{V}}Z_{\psi}^{2} - 1]G_{V}\mu^{2\varepsilon} + iG_{V}\mu^{2\varepsilon}y_{\phi}^{2}\frac{1}{(4\pi)^{2}}\frac{1}{\varepsilon} + iG_{T}\mu^{2\varepsilon}y_{\phi}^{2}\frac{-6}{(4\pi)^{2}}\frac{1}{\varepsilon}$$

$$(\sigma_{\mu\nu} \otimes \sigma^{\mu\nu}) \qquad 0 = i[Z_{G_{T}}Z_{\psi}^{2} - 1]G_{T}\mu^{2\varepsilon} + iG_{V}\mu^{2\varepsilon}y_{\phi}^{2}\frac{-1}{(4\pi)^{2}}\frac{1}{\varepsilon}$$

$$\Rightarrow \qquad \begin{cases} (Z_{G_{V}}Z_{\psi}^{2} - 1)G_{V} = \frac{y_{\phi}^{2}}{(4\pi)^{2}}\frac{1}{\varepsilon}(-G_{V} + 6G_{T}) \\ (Z_{G_{T}}Z_{\psi}^{2} - 1)G_{T} = \frac{y_{\phi}^{2}}{(4\pi)^{2}}\frac{1}{\varepsilon}G_{V} \end{cases}$$

$$(51)$$

Using eq.(12) for β_{G_S} that also applies here and eq.(14), the above gives

$$\beta_{G_V} = \frac{y_{\phi}^2}{(4\pi)^2} 12G_T, \ \beta_{G_T} = \frac{y_{\phi}^2}{(4\pi)^2} 2(G_V + G_T)$$
(52)

・ロン・(理)・・ヨン・ヨン・

= 990

RG running at one loop

RG running at one loop – Example 2

In terms of matrix notation, RGEs become

$$\mu \frac{d}{d\mu} \begin{pmatrix} G_V \\ G_T \end{pmatrix} = \frac{2y_{\phi}^2}{(4\pi)^2} \begin{pmatrix} 0 & 6 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} G_V \\ G_T \end{pmatrix}$$
(53)

The matrix on rhs can be diagonalized by a similarity transformation to the eigenvalues and eigenvectors:

$$G_1 = \frac{1}{\sqrt{10}}(G_V + 3G_T), \ G_2 = \frac{1}{\sqrt{5}}(G_V - 2G_T),$$
(54)

$$\mu \frac{dG_1}{d\mu} = y_{\phi}^2 a_1 G_1, \ a_1 = \frac{6}{(4\pi)^2},$$
(55)

$$\mu \frac{dG_2}{d\mu} = y_{\phi}^2 a_2 G_2, \ a_2 = -\frac{4}{(4\pi)^2}.$$
(56)

ヘロト 人間 とくほ とくほ とう

3

RG running at one loop

RG running at one loop – Example 2

Including RG running of y_{ϕ} in eq.(26), the leading log can be summed as using eq.(28):

$$\frac{G_1(\mu)}{G_1(\mu_0)} = R^{3/5}, \ \frac{G_2(\mu)}{G_2(\mu_0)} = R^{-2/5}, \ R = \frac{y_{\phi}^2(\mu)}{y_{\phi}^2(\mu_0)}$$
(57)

which translate into the running of the original couplings:

$$G_{V}(\mu) = \frac{1}{5} \left[\left(2R^{3/5} + 3R^{-2/5} \right) G_{V}(\mu_{0}) + 6 \left(R^{3/5} - R^{-2/5} \right) G_{T}(\mu_{0}) \right]$$
(58)

$$G_{T}(\mu) = \frac{1}{5} \left[\left(3R^{3/5} + 2R^{-2/5} \right) G_{T}(\mu_{0}) + \left(R^{3/5} - R^{-2/5} \right) G_{V}(\mu_{0}) \right]$$
(59)

Conclusion: so long as y_{ϕ} runs, a nonzero G_V can always develop from a nonzero G_T .

Matching calculation at one loop

Matching calculation at one loop

We said earlier that matching and RG running can be done independently to various orders in perturbation theory.

Matching: find out new terms in \mathcal{L}_2 for EFT₂ (IR theory) that account for effects on light fields of a heavy field that appears in \mathcal{L}_1 for EFT₁ (UV theory) but has been integrated out in \mathcal{L}_2 for EFT₂.

Continue with our example: Example 1: heavy scalar

$$\mathscr{L}_{1}(\Phi,\phi,\psi) = [i\bar{\psi}\bar{\partial}\psi - \kappa\bar{\psi}\psi + \cdots] + \left[\frac{1}{2}(\partial_{\mu}\Phi)(\partial^{\mu}\Phi) - \frac{1}{2}M^{2}\Phi^{2} + \cdots\right] -y_{\Phi}\bar{\psi}\psi\Phi + \cdots$$
(60)

Light fields: ψ of mass κ , ϕ of mass m. Heavy field: Φ of mass $M \gg m$, κ

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Matching calculation at one loop

Matching calculation at one loop - Example 1

We want to increase accuracy in $\psi\psi \rightarrow \psi\psi$ scattering amplitude.

This is accomplished by improvement in RGE and matching calc. For matching at one loop, this requires to improve bilinear and quartic terms in ψ :

$$\mathscr{L}_{2}(\phi,\psi) = i \mathbb{Z}_{\psi} \overline{\psi} \partial \psi - \kappa \overline{\psi} \psi + \frac{1}{2} G_{S} \overline{\psi} \psi \overline{\psi} \psi + \cdots$$
(61)

Our notations are a bit messy: we sometimes write explicitly renormalization constants or c.t. but sometimes not.

Matching calculation at one loop

Matching calculation at one loop – Example 1

How to do matching at one loop?

- Choose a one-particle-irreducible function of light fields that helps to determine terms in L₂.
- Compute the function at one loop in EFT₁ involving a heavy field o of mass *M*, and fix all relevant c.t. using mass-independent scheme. We get answer *A*₁.
- Compute the function at one loop in EFT₂ involving an effective interaction that arises from integrating out Φ, and fix all relevant c.t. using the same scheme. We get answer A₂.
- Take the difference $A_1 A_2$ and set the scale $\mu = M$, and put the answer back into \mathscr{L}_2 .

Matching calculation at one loop

Matching calculation at one loop – Example 1

How to do matching at one loop?

- Choose a one-particle-irreducible function of light fields that helps to determine terms in L₂.
- Compute the function at one loop in EFT₂ involving an effective interaction that arises from integrating out \$\phi\$, and fix all relevant c.t. using the same scheme. We get answer A₂.
- Take the difference $A_1 A_2$ and set the scale $\mu = M$, and put the answer back into \mathscr{L}_2 .

Matching calculation at one loop

Matching calculation at one loop – Example 1

How to do matching at one loop?

- Choose a one-particle-irreducible function of light fields that helps to determine terms in L₂.
- Compute the function at one loop in EFT₂ involving an effective interaction that arises from integrating out Φ, and fix all relevant c.t. using the same scheme. We get answer A₂.
- Take the difference $A_1 A_2$ and set the scale $\mu = M$, and put the answer back into \mathscr{L}_2 .

Matching calculation at one loop

Matching calculation at one loop – Example 1

How to do matching at one loop?

- Choose a one-particle-irreducible function of light fields that helps to determine terms in L₂.
- Compute the function at one loop in EFT₂ involving an effective interaction that arises from integrating out Φ, and fix all relevant c.t. using the same scheme. We get answer A₂.
- Take the difference $A_1 A_2$ and set the scale $\mu = M$, and put the answer back into \mathscr{L}_2 .

Matching calculation at one loop

Matching calculation at one loop – Example 1

- For example, to compute the scattering amplitude $\psi\psi \rightarrow \psi\psi$ at one loop in EFT₂, we have to do matching in both z_{ϕ} , which affects normalization, and G_{S} , which contributes to the part of the amplitude due to integrated out ϕ .
- Matching calculation of z_φ.
 In EFT₁ the self-energy diagram of ψ due to Yukawa coupling with φ gives

$$(-iy_{\Phi})^{2}\mu^{2\varepsilon}\int \frac{d^{d}k}{(2\pi)^{d}}\frac{i}{k+\not{p}-\kappa}\frac{i}{k^{2}-M^{2}}$$

= $y_{\Phi}^{2}\int dx \ \mu^{2\varepsilon}\int \frac{d^{d}\ell}{(2\pi)^{d}}\frac{x\not{p}+\kappa}{[\ell^{2}-\Delta+i0^{+}]^{2}}, \ \Delta = (1-x)\kappa^{2}+xM^{2}$

(Feynman diagram on page 10)

Matching calculation at one loop

Matching calculation at one loop – Example 1

- For example, to compute the scattering amplitude $\psi\psi \rightarrow \psi\psi$ at one loop in EFT₂, we have to do matching in both z_{ϕ} , which affects normalization, and G_{S} , which contributes to the part of the amplitude due to integrated out ϕ .
- Matching calculation of z_φ. In EFT₁ the self-energy diagram of ψ due to Yukawa coupling with Φ gives

$$(-iy_{\Phi})^{2}\mu^{2\varepsilon}\int \frac{d^{d}k}{(2\pi)^{d}}\frac{i}{\not{k}+\not{p}-\kappa}\frac{i}{k^{2}-M^{2}}$$

= $y_{\Phi}^{2}\int dx \ \mu^{2\varepsilon}\int \frac{d^{d}\ell}{(2\pi)^{d}}\frac{x\not{p}+\kappa}{[\ell^{2}-\Delta+i0^{+}]^{2}}, \ \Delta = (1-x)\kappa^{2}+xM^{2}$

(Feynman diagram on page 10)

イロト 不得 トイヨト イヨト

Matching calculation at one loop

Matching calculation at one loop – Example 1

• We want the part $\propto p$ whose coefficient is

$$\frac{iy_{\Phi}^2}{(4\pi)^2} \int dx \ x \ \left[\frac{1}{\overline{\epsilon}} + \ln \frac{\mu^2}{\Delta - i0^+}\right], \ \frac{1}{\overline{\epsilon}} = \frac{1}{\epsilon} - \gamma_{\rm E} + \ln(4\pi)$$

In modified minimal subtraction (\overline{MS}), we cancel the $1/\overline{\epsilon}$ term by c.t. $(Z_{\psi} - 1)i\phi$, leaving with us the finite piece:

$$\frac{iy_{\Phi}^2}{(4\pi)^2} \left[\frac{1}{2} \ln \frac{\mu^2}{M^2} - \int dx \, x \ln \left(x + (1-x)\delta \right) \right], \ \delta = \frac{\kappa^2}{M^2}$$

which can be expanded systematically in the small parameter δ :

$$\frac{iy_{\Phi}^2}{(4\pi)^2} \left[\frac{1}{2} \ln \frac{\mu^2}{M^2} + \frac{1}{4} - \frac{1}{4} \delta^2 \left(2\ln \delta + 1 \right) + \cdots \right]$$

Exercise – derive the above expansion.

Matching calculation at one loop

Matching calculation at one loop – Example 1

• We want the part $\propto p$ whose coefficient is

$$\frac{iy_{\Phi}^2}{(4\pi)^2} \int d\mathbf{x} \, \mathbf{x} \, \left[\frac{1}{\overline{\epsilon}} + \ln \frac{\mu^2}{\Delta - i0^+} \right], \ \frac{1}{\overline{\epsilon}} = \frac{1}{\epsilon} - \gamma_{\mathsf{E}} + \ln(4\pi)$$

In modified minimal subtraction (\overline{MS}), we cancel the $1/\overline{\epsilon}$ term by c.t. $(Z_{\psi} - 1)ip$, leaving with us the finite piece:

$$\frac{iy_{\Phi}^2}{(4\pi)^2} \left[\frac{1}{2} \ln \frac{\mu^2}{M^2} - \int dx \ x \ln \left(x + (1-x)\delta \right) \right], \ \delta = \frac{\kappa^2}{M^2}$$

which can be expanded systematically in the small parameter δ :

$$\frac{iy_{\Phi}^2}{(4\pi)^2} \left[\frac{1}{2} \ln \frac{\mu^2}{M^2} + \frac{1}{4} - \frac{1}{4} \delta^2 \left(2 \ln \delta + 1 \right) + \cdots \right]$$

Exercise – derive the above expansion.

Matching calculation at one loop

Matching calculation at one loop – Example 1

- In EFT₂ the one loop formed by G_S coupling does not contribute a *φ* term to the self-energy of *ψ*.
- This difference between EFT₁ and EFT₂ is then amended by attaching to *L*₂ a term:

$$(z_{\psi}-1)i\bar{\psi}\partial\psi, \qquad (62)$$

where at $\mu = M$

$$z_{\psi}(M) - 1 = \frac{y_{\Phi}^2}{(4\pi)^2} \frac{1}{4} [1 + \cdots].$$
(63)

Matching calculation at one loop

Matching calculation at one loop – Example 1

- In EFT₂ the one loop formed by G_S coupling does not contribute a *φ* term to the self-energy of *ψ*.
- This difference between EFT₁ and EFT₂ is then amended by attaching to *L*₂ a term:

$$(z_{\psi}-1)i\bar{\psi}\partial\psi, \qquad (62)$$

where at $\mu = M$

$$z_{\psi}(M) - 1 = \frac{y_{\Phi}^2}{(4\pi)^2} \frac{1}{4} [1 + \cdots].$$
(63)

Matching calculation at one loop

Matching calculation at one loop – Example 1

Matching calculation of G_S .

In EFT₁ compute 1-loop contri. to ψψ → ψψ due to Yukawa coupling of Φ.
 Again, for matching, not necessary to include crossing diag in both EFTs.

Focus on momentum-indept terms. But we keep a mass κ for ψ to avoid IR divergence. The first two diagrams are finite:

diagram a =
$$(-iy_{\Phi}\mu^{\varepsilon})^4 \int \frac{d^d k}{(2\pi)^d} \bar{u}_3 \frac{i}{k-\kappa} u_1 \bar{u}_4 \frac{i}{-k-\kappa} u_2 \left[\frac{i}{k^2 - M^2}\right]^2$$
 (64)

diagram b =
$$(-iy_{\Phi}\mu^{\varepsilon})^4 \int \frac{d^d k}{(2\pi)^d} \bar{u}_3 \frac{i}{k-\kappa} u_1 \bar{u}_4 \frac{i}{+k-\kappa} u_2 \left[\frac{i}{k^2 - M^2}\right]^2$$
 (65)

Matching calculation at one loop

Matching calculation at one loop – Example 1

Matching calculation of G_S .

In EFT₁ compute 1-loop contri. to ψψ → ψψ due to Yukawa coupling of Φ.
 Again, for matching, not necessary to include crossing diag in both EFTs.

Focus on momentum-indept terms. But we keep a mass κ for ψ to avoid IR divergence. The first two diagrams are finite:

diagram a =
$$(-iy_{\Phi}\mu^{\varepsilon})^4 \int \frac{d^d k}{(2\pi)^d} \bar{u}_3 \frac{i}{\not{k}-\kappa} u_1 \bar{u}_4 \frac{i}{-\not{k}-\kappa} u_2 \left[\frac{i}{k^2-M^2}\right]^2$$
 (64)

diagram b =
$$(-iy_{\Phi}\mu^{\varepsilon})^4 \int \frac{d^d k}{(2\pi)^d} \bar{u}_3 \frac{i}{\not{k}-\kappa} u_1 \bar{u}_4 \frac{i}{+\not{k}-\kappa} u_2 \left[\frac{i}{k^2-M^2}\right]^2$$
 (65)

▲口を▲聞を▲回を▲回を 回 ろよの

Matching calculation at one loop

Matching calculation at one loop – Example 1

Their sum is simpler:

diagrams (ab) =
$$y_{\Phi}^{4} \mu^{2\varepsilon} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{\bar{u}_{3}(\underline{k} + \kappa)u_{1}\bar{u}_{4}(2\kappa)u_{2}}{(k^{2} - \kappa^{2})^{2}[k^{2} - M^{2}]^{2}}$$

= $y_{\Phi}^{4} \mu^{2\varepsilon} 2\kappa^{2} \bar{u}_{3}u_{1}\bar{u}_{4}u_{2} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{1}{(k^{2} - \kappa^{2})^{2}[k^{2} - M^{2}]^{2}}$ (66)

where we reserve $\mu^{2\varepsilon}$ associated with G_S .

Compute the loop integral:

$$\int \frac{d^4k}{(2\pi)^4} \frac{1}{(k^2 - \kappa^2)^2 [k^2 - M^2]^2}$$

$$= \int_0^1 dx \, 6x(1-x) \int \frac{d^4k}{(2\pi)^4} \frac{1}{[k^2 - \Delta + i0^+]^4} \quad \delta = \frac{\kappa^2}{M^2}$$

$$= \frac{i}{(4\pi)^2} \int_0^1 dx \frac{x(1-x)}{\Delta^2} = \frac{i}{(4\pi)^2} \frac{1}{M^4} \int_0^1 dx \frac{x(1-x)}{[x+(1-x)\delta]^2}, \quad (67)$$

Matching calculation at one loop

Matching calculation at one loop – Example 1

Their sum is simpler:

diagrams (ab) =
$$y_{\Phi}^{4} \mu^{2\varepsilon} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{\bar{u}_{3}(\underline{k} + \kappa)u_{1}\bar{u}_{4}(2\kappa)u_{2}}{(k^{2} - \kappa^{2})^{2}[k^{2} - M^{2}]^{2}}$$

= $y_{\Phi}^{4} \mu^{2\varepsilon} 2\kappa^{2}\bar{u}_{3}u_{1}\bar{u}_{4}u_{2} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{1}{(k^{2} - \kappa^{2})^{2}[k^{2} - M^{2}]^{2}}$ (66)

where we reserve $\mu^{2\varepsilon}$ associated with G_S .

Compute the loop integral:

$$\int \frac{d^4 k}{(2\pi)^4} \frac{1}{(k^2 - \kappa^2)^2 [k^2 - M^2]^2}$$

$$= \int_0^1 dx \, 6x(1-x) \int \frac{d^4 k}{(2\pi)^4} \frac{1}{[k^2 - \Delta + i0^+]^4} \quad \delta = \frac{\kappa^2}{M^2}$$

$$= \frac{i}{(4\pi)^2} \int_0^1 dx \frac{x(1-x)}{\Delta^2} = \frac{i}{(4\pi)^2} \frac{1}{M^4} \int_0^1 dx \frac{x(1-x)}{[x+(1-x)\delta]^2}, \quad (67)$$
Matching calculation at one loop

Matching calculation at one loop – Example 1

• We want to expand in small δ .

It is not possible to expand the integrand directly.

You may appeal to *Mathematica* etc. But sometimes you have to do it yourself when softwares cannot do it well.

There is a systematical way to do so here by first finishing integration with fractioning,

$$\frac{x(1-x)}{(x+a)^2} = \frac{-(x+a)^2 + (1+2a)(x+a) - a(1+a)}{(x+a)^2}, \ a = \frac{\delta}{1-\delta}$$
$$\int_0^1 dx \frac{x(1-x)}{[x+(1-x)\delta]^2} = \frac{1}{(1-\delta)^2} \left[-1 + (1+2a)\ln\frac{1+a}{a} - a(1+a)\left(\frac{1}{a} - \frac{1}{1+a}\right) \right]$$

and then expanding in δ .

Matching calculation at one loop

Matching calculation at one loop – Example 1

We want to expand in small δ.

It is not possible to expand the integrand directly.

You may appeal to *Mathematica* etc. But sometimes you have to do it yourself when softwares cannot do it well.

There is a systematical way to do so here by first finishing integration with fractioning,

$$\frac{x(1-x)}{(x+a)^2} = \frac{-(x+a)^2 + (1+2a)(x+a) - a(1+a)}{(x+a)^2}, \ a = \frac{\delta}{1-\delta}$$
$$\int_0^1 dx \frac{x(1-x)}{[x+(1-x)\delta]^2} = \frac{1}{(1-\delta)^2} \left[-1 + (1+2a)\ln\frac{1+a}{a} - a(1+a)\left(\frac{1}{a} - \frac{1}{1+a}\right) \right]$$

and then expanding in δ .

Matching calculation at one loop

Matching calculation at one loop – Example 1

In summary, the first terms are

diag (ab) =
$$\frac{iy_{\Phi}^4}{(4\pi)^2} \frac{2\kappa^2}{M^4} \mu^{2\varepsilon} \bar{u}_3 u_1 \bar{u}_4 u_2 [(-2 - \ln \delta) + (-4 - 4\ln \delta)\delta + \cdots]$$
 (68)

To compute diagram c, compute first self-energy of Φ due to ψ loop: $i\Sigma_{\Phi}(p^{2})$ $= -(-iy_{\Phi}\mu^{\varepsilon})^{2} \int \frac{d^{d}k}{(2\pi)^{d}} \operatorname{tr} \frac{i}{\not{k}-\kappa} \frac{i}{\not{k}+\not{p}-\kappa}$

$$= -\frac{iy_{\Phi}^{2}}{(4\pi)^{2}} 12 \int_{0}^{1} [\kappa^{2} - x(1-x)\rho^{2}] \left[\frac{1}{\overline{\varepsilon}} + \frac{1}{3} + \ln \frac{\mu^{2}}{\kappa^{2} - x(1-x)\rho^{2}}\right]$$

$$= -\frac{iy_{\Phi}^{2}}{(4\pi)^{2}} \left\{ 2[6\kappa^{2} - \rho^{2}]\frac{1}{\overline{\varepsilon}} + 12 \int_{0}^{1} [\kappa^{2} - x(1-x)\rho^{2}] \left[\frac{1}{3} + \ln \frac{\mu^{2}}{\kappa^{2} - x(1-x)\rho^{2}}\right] \right\} (69)$$

Matching calculation at one loop

Matching calculation at one loop – Example 1

In summary, the first terms are

diag (ab) =
$$\frac{iy_{\Phi}^4}{(4\pi)^2} \frac{2\kappa^2}{M^4} \mu^{2\varepsilon} \bar{u}_3 u_1 \bar{u}_4 u_2 [(-2 - \ln \delta) + (-4 - 4\ln \delta)\delta + \cdots]$$
 (68)

To compute diagram c, compute first self-energy of ϕ due to ψ loop:

$$i\Sigma_{\Phi}(p^{2}) = -(-iy_{\Phi}\mu^{\varepsilon})^{2} \int \frac{d^{d}k}{(2\pi)^{d}} \operatorname{tr} \frac{i}{\not{k}-\kappa} \frac{i}{\not{k}+\not{p}-\kappa}$$

$$= -\frac{iy_{\Phi}^{2}}{(4\pi)^{2}} 12 \int_{0}^{1} [\kappa^{2}-x(1-x)p^{2}] \left[\frac{1}{\overline{\varepsilon}}+\frac{1}{3}+\ln\frac{\mu^{2}}{\kappa^{2}-x(1-x)p^{2}}\right]$$

$$= -\frac{iy_{\Phi}^{2}}{(4\pi)^{2}} \left\{2[6\kappa^{2}-p^{2}]\frac{1}{\overline{\varepsilon}}+12 \int_{0}^{1} [\kappa^{2}-x(1-x)p^{2}] \left[\frac{1}{3}+\ln\frac{\mu^{2}}{\kappa^{2}-x(1-x)p^{2}}\right]\right\} (69)$$

イロト イ理ト イヨト イヨト

Matching calculation at one loop

Matching calculation at one loop – Example 1

The $1/\bar{\varepsilon}$ term is cancelled by c.t., so that as $p^2 \rightarrow 0$ we have

$$i \left[\Sigma_{\Phi}(p^2) + \text{c.t.} \right]_{p^2 = 0} = -\frac{i y_{\Phi}^2}{(4\pi)^2} 4\kappa^2 \left[1 + 3\ln\frac{\mu^2}{\kappa^2} \right]$$
(70)

Caution: likely illegitimate to drop p^2 with respect to κ^2 .

diag c and c.t. =
$$(-iy_{\Phi}\mu^{\varepsilon})^{2}\bar{u}_{3}u_{1}\bar{u}_{4}u_{2}\left(\frac{i}{-M^{2}}\right)^{2}i\left[\Sigma_{\phi}(p^{2})+\text{c.t.}\right]_{p^{2}=0}$$

= $-\frac{iy_{\Phi}^{4}}{(4\pi)^{2}}\frac{4\kappa^{2}}{M^{4}}\mu^{2\varepsilon}\bar{u}_{3}u_{1}\bar{u}_{4}u_{2}\left[1+3\ln\frac{\mu^{2}}{\kappa^{2}}\right]$ (71)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Matching calculation at one loop

Matching calculation at one loop – Example 1

- To compute diag d, compute first 1-loop $\Phi \bar{\psi} \psi$ vertex due to Φ Yukawa coupling.
- UV div is independent of external momenta, but again the dropped p^2 term is of the same order as the kept κ^2 term.

$$-iy_{\Phi}\mu^{\varepsilon}V_{\Phi\bar{\psi}\psi}(0,0) = (-iy_{\Phi}\mu^{\varepsilon})^{3}\int \frac{d^{d}k}{(2\pi)^{d}}\frac{i}{k-\kappa}\frac{i}{k-\kappa}\frac{i}{k^{2}-M^{2}}$$
$$= y_{\Phi}^{3}\mu^{3\varepsilon}\int \frac{d^{d}k}{(2\pi)^{d}}\frac{k^{2}+\kappa^{2}}{[k^{2}-\kappa^{2}]^{2}[k^{2}-M^{2}]}$$
$$= y_{\Phi}^{3}\mu^{\varepsilon}\frac{i}{(4\pi)^{2}}\int dx\left[\frac{1}{\overline{\varepsilon}}+\ln\frac{\mu^{2}}{\Delta}-\frac{2(1-x)\kappa^{2}}{\Delta}\right]$$
(72)

ヘロン 人間 とくほ とくほ とう

Matching calculation at one loop

Matching calculation at one loop – Example 1

- To compute diag d, compute first 1-loop Φψψ vertex due to Φ Yukawa coupling.
- UV div is independent of external momenta, but again the dropped *p*² term is of the same order as the kept κ² term.

$$-iy_{\Phi}\mu^{\varepsilon}V_{\Phi\bar{\psi}\psi}(0,0) = (-iy_{\Phi}\mu^{\varepsilon})^{3}\int \frac{d^{d}k}{(2\pi)^{d}}\frac{i}{\not{k}-\kappa}\frac{i}{k}\frac{i}{\kappa^{2}-M^{2}}$$
$$= y_{\Phi}^{3}\mu^{3\varepsilon}\int \frac{d^{d}k}{(2\pi)^{d}}\frac{k^{2}+\kappa^{2}}{[k^{2}-\kappa^{2}]^{2}[k^{2}-M^{2}]}$$
$$= y_{\Phi}^{3}\mu^{\varepsilon}\frac{i}{(4\pi)^{2}}\int dx\left[\frac{1}{\overline{\varepsilon}}+\ln\frac{\mu^{2}}{\Delta}-\frac{2(1-x)\kappa^{2}}{\Delta}\right]$$
(72)

ヘロン 人間 とくほ とくほ とう

Matching calculation at one loop

Matching calculation at one loop – Example 1

The $1/\bar{\varepsilon}$ term is removed by c.t. for the vertex, so that

$$-iy_{\Phi}\mu^{\varepsilon}V_{\Phi\bar{\psi}\psi}(0,0) + \text{c.t.} \quad \delta = \frac{\kappa^{2}}{M^{2}}$$

$$= iy_{\Phi}\mu^{\varepsilon}\frac{y_{\Phi}^{2}}{(4\pi)^{2}}\int dx \left[\ln\frac{\mu^{2}}{M^{2}} - \ln[x + (1-x)\delta] - \delta\frac{2(1-x)}{x + (1-x)\delta}\right]$$

$$= iy_{\Phi}\mu^{\varepsilon}\frac{y_{\Phi}^{2}}{(4\pi)^{2}}\left[\ln\frac{\mu^{2}}{M^{2}} + 1 + (2+3\ln\delta)\delta + \cdots\right]$$
(73)

Including a factor of 2, we have

diag d and c.t.

$$= 2 \times (-iy_{\Phi}\mu^{\varepsilon}) \frac{i}{-M^{2}} \bar{u}_{3}u_{1}\bar{u}_{4}u_{2} \left[-iy_{\Phi}\mu^{\varepsilon}V_{\Phi\bar{\psi}\psi}(0,0) + \text{c.t.}\right]$$

$$= -\frac{iy_{\Phi}^{4}}{(4\pi)^{2}}\mu^{2\varepsilon}\bar{u}_{3}u_{1}\bar{u}_{4}u_{2}\frac{2}{M^{2}} \left[\ln\frac{\mu^{2}}{M^{2}} + 1 + \frac{\kappa^{2}}{M^{2}}\left(2 + 3\ln\frac{\kappa^{2}}{M^{2}}\right) + \cdots\right]$$
(74)

・ロト・雪・・雨・・雨・ 日・ うらぐ

Matching calculation at one loop

Matching calculation at one loop – Example 1

In summary, the leading one-loop renormalized contribution to $\psi\psi \rightarrow \psi\psi$ in EFT₁ is

renor. one-loop EFT₁ diag. for $\psi\psi \rightarrow \psi\psi$ due to Φ exchange

$$= \frac{i2y_{\Phi}^{4}}{(4\pi)^{2}M^{2}}\mu^{2\varepsilon}\bar{u}_{3}u_{1}\bar{u}_{4}u_{2}\left\{-1-\ln\frac{\mu^{2}}{M^{2}}+\delta\left(-6-6\ln\frac{\mu^{2}}{M^{2}}+2\ln\delta\right)+\cdots\right\}$$
(75)

where it is actually unclear if the $O(\delta)$ terms are complete.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Matching calculation at one loop

Matching calculation at one loop – Example 1

In EFT₂ compute the one-loop contribution to ψψ→ψψ due to effective G_S coupling.

All diagrams are now UV divergent.

diagram a =
$$(iG_S\mu^{2\varepsilon})^2 \int \frac{d^dk}{(2\pi)^d} \bar{u}_3 \frac{i}{k-\kappa} u_1 \bar{u}_4 \frac{i}{-k-\kappa} u_2$$
 (76)

diagram b =
$$(iG_S\mu^{2\varepsilon})^2 \int \frac{d^dk}{(2\pi)^d} \bar{u}_3 \frac{i}{k-\kappa} u_1 \bar{u}_4 \frac{i}{+k-\kappa} u_2$$
 (77)

イロト イポト イヨト イヨト

Matching calculation at one loop

Matching calculation at one loop – Example 1

In EFT₂ compute the one-loop contribution to ψψ→ψψ due to effective G_S coupling.

All diagrams are now UV divergent.

diagram a =
$$(iG_S\mu^{2\varepsilon})^2 \int \frac{d^dk}{(2\pi)^d} \bar{u}_3 \frac{i}{k-\kappa} u_1 \bar{u}_4 \frac{i}{-k-\kappa} u_2$$
 (76)

diagram b =
$$(iG_{\rm S}\mu^{2\varepsilon})^2 \int \frac{d^d k}{(2\pi)^d} \bar{u}_3 \frac{i}{k-\kappa} u_1 \bar{u}_4 \frac{i}{+k-\kappa} u_2$$
 (77)

イロト 不得 トイヨト イヨト

Matching calculation at one loop

Matching calculation at one loop – Example 1

Their sum is

diagrams (ab) =
$$G_{S}^{2}\mu^{2\varepsilon}\mu^{2\varepsilon}\int \frac{d^{d}k}{(2\pi)^{d}} \frac{\bar{u}_{3}(\not{k}+\kappa)u_{1}\bar{u}_{4}2\kappa u_{2}}{[k^{2}-\kappa^{2}]^{2}}$$

= $G_{S}^{2}\mu^{2\varepsilon}\frac{i}{(4\pi)^{2}}2\kappa^{2}\bar{u}_{3}u_{1}\bar{u}_{4}u_{2}\left[\frac{1}{\bar{\varepsilon}}+\ln\frac{\mu^{2}}{\kappa^{2}}\right]$ (78)

Diagram c is identical in two EFTs in our approximation.

diagram d =
$$\mathbf{2} \times (iG_S \mu^{2\varepsilon})^2 \int \frac{d^d k}{(2\pi)^d} \bar{u}_3 \frac{i}{\underline{k} - \kappa} \frac{i}{\underline{k} - \kappa} u_1 \bar{u}_4 u_2$$

= $G_S^2 \mu^{2\varepsilon} \bar{u}_3 u_1 \bar{u}_4 u_2 \frac{i}{(4\pi)^2} 2\kappa^2 \left[\frac{3}{\overline{\varepsilon}} + 3\ln\frac{\mu^2}{\kappa^2} + 1\right]$ (79)

• Absorbing the $1/\bar{\varepsilon}$ terms by c.t. for G_S coupling in \mathscr{L}_2 , we are left with

renormalized 1-loop EFT $_2$ diagrams for $\psi\psi o\psi\psi$ due to $G_{\mathcal{S}}$ coupling

$$= G_{S}^{2} \mu^{2\varepsilon} \frac{i}{(4\pi)^{2}} 2\kappa^{2} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2} \left\{ -1 - 2\ln \frac{\mu^{2}}{\kappa^{2}} \right\}$$
(80)

Matching calculation at one loop

Matching calculation at one loop – Example 1

Their sum is

diagrams (ab) =
$$G_{S}^{2}\mu^{2\varepsilon}\mu^{2\varepsilon}\int \frac{d^{d}k}{(2\pi)^{d}} \frac{\bar{u}_{3}(\not{k}+\kappa)u_{1}\bar{u}_{4}2\kappa u_{2}}{[k^{2}-\kappa^{2}]^{2}}$$

= $G_{S}^{2}\mu^{2\varepsilon}\frac{i}{(4\pi)^{2}}2\kappa^{2}\bar{u}_{3}u_{1}\bar{u}_{4}u_{2}\left[\frac{1}{\bar{\varepsilon}}+\ln\frac{\mu^{2}}{\kappa^{2}}\right]$ (78)

Diagram c is identical in two EFTs in our approximation.

diagram d =
$$2 \times (iG_{S}\mu^{2\epsilon})^{2} \int \frac{d^{d}k}{(2\pi)^{d}} \bar{u}_{3} \frac{i}{k-\kappa} \frac{i}{k-\kappa} u_{1} \bar{u}_{4} u_{2}$$

= $G_{S}^{2}\mu^{2\epsilon} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2} \frac{i}{(4\pi)^{2}} 2\kappa^{2} \left[\frac{3}{\bar{\epsilon}} + 3\ln\frac{\mu^{2}}{\kappa^{2}} + 1\right]$ (79)

Absorbing the $1/\overline{\epsilon}$ terms by c.t. for G_S coupling in \mathscr{L}_2 , we are left with

renormalized 1-loop EFT₂ diagrams for $\psi\psi \rightarrow \psi\psi$ due to G_S coupling

$$= G_{S}^{2} \mu^{2\varepsilon} \frac{i}{(4\pi)^{2}} 2\kappa^{2} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2} \left\{ -1 - 2\ln \frac{\mu^{2}}{\kappa^{2}} \right\}$$
(80)

Matching calculation at one loop

Matching calculation at one loop – Example 1

Their sum is

diagrams (ab) =
$$G_{S}^{2}\mu^{2\varepsilon}\mu^{2\varepsilon}\int \frac{d^{d}k}{(2\pi)^{d}} \frac{\bar{u}_{3}(\not{k}+\kappa)u_{1}\bar{u}_{4}2\kappa u_{2}}{[k^{2}-\kappa^{2}]^{2}}$$

= $G_{S}^{2}\mu^{2\varepsilon}\frac{i}{(4\pi)^{2}}2\kappa^{2}\bar{u}_{3}u_{1}\bar{u}_{4}u_{2}\left[\frac{1}{\bar{\varepsilon}}+\ln\frac{\mu^{2}}{\kappa^{2}}\right]$ (78)

Diagram c is identical in two EFTs in our approximation.

diagram d =
$$2 \times (iG_{S}\mu^{2\epsilon})^{2} \int \frac{d^{d}k}{(2\pi)^{d}} \bar{u}_{3} \frac{i}{k-\kappa} \frac{i}{k-\kappa} u_{1} \bar{u}_{4} u_{2}$$

= $G_{S}^{2}\mu^{2\epsilon} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2} \frac{i}{(4\pi)^{2}} 2\kappa^{2} \left[\frac{3}{\bar{\epsilon}} + 3\ln\frac{\mu^{2}}{\kappa^{2}} + 1\right]$ (79)

Absorbing the $1/\bar{\epsilon}$ terms by c.t. for G_S coupling in \mathcal{L}_2 , we are left with

renormalized 1-loop EFT_2 diagrams for $\psi\psi\to\psi\psi$ due to G_S coupling

$$= G_{\rm S}^2 \mu^{2\varepsilon} \frac{i}{(4\pi)^2} 2\kappa^2 \bar{u}_3 u_1 \bar{u}_4 u_2 \left\{ -1 - 2\ln\frac{\mu^2}{\kappa^2} \right\}$$
(80)

Matching calculation at one loop

Matching calculation at one loop – Example 1

The difference

 $\mathsf{EFT}_1-\mathsf{EFT}_2$

gives the correction to G_S upon using $G_S = y_{\Phi}^2/M^2$:

$$G_{S}(\mu) = \frac{y_{\Phi}^{2}}{M^{2}} - \frac{2y_{\Phi}^{4}}{(4\pi)^{2}M^{2}} \left\{ 1 + \ln \frac{\mu^{2}}{M^{2}} + \delta \left(5 + 4\ln \frac{\mu^{2}}{M^{2}} \right) \right\}$$

which should be included in \mathcal{L}_2 as a consequence of matching.

- Comments
 - No ln κ² singularity appears in the matching result as expected: IR physics is not changed.
 - To avoid large log, we should set $\mu = M$ in matching.
 - Large logs will be summed to all orders by RGE in EFT₂

イロト 不得 トイヨト イヨト 二臣

(81)

Matching calculation at one loop

Matching calculation at one loop – Example 1

The difference

(

 $\mathsf{EFT}_1-\mathsf{EFT}_2$

gives the correction to G_S upon using $G_S = y_{\Phi}^2/M^2$:

$$\Theta_{\rm S}(\mu) = \frac{y_{\Phi}^2}{M^2} - \frac{2y_{\Phi}^4}{(4\pi)^2 M^2} \left\{ 1 + \ln \frac{\mu^2}{M^2} + \delta \left(5 + 4\ln \frac{\mu^2}{M^2} \right) \right\}$$
(81)

which should be included in \mathcal{L}_2 as a consequence of matching.

- Comments
 - No ln κ² singularity appears in the matching result as expected: IR physics is not changed.
 - To avoid large log, we should set $\mu = M$ in matching.
 - Large logs will be summed to all orders by RGE in EFT₂.

<ロト < 同ト < 回ト < 回ト = 三

Matching calculation at one loop

Matching calculation at one loop – Example 1

The difference

(

 $\mathsf{EFT}_1-\mathsf{EFT}_2$

gives the correction to G_S upon using $G_S = y_{\Phi}^2/M^2$:

$$\Theta_{\rm S}(\mu) = \frac{y_{\Phi}^2}{M^2} - \frac{2y_{\Phi}^4}{(4\pi)^2 M^2} \left\{ 1 + \ln \frac{\mu^2}{M^2} + \delta \left(5 + 4\ln \frac{\mu^2}{M^2} \right) \right\}$$
(81)

which should be included in \mathcal{L}_2 as a consequence of matching.

- Comments
 - No ln κ² singularity appears in the matching result as expected: IR physics is not changed.
 - To avoid large log, we should set $\mu = M$ in matching.
 - Large logs will be summed to all orders by RGE in EFT₂.

イロト 不得 トイヨト イヨト

Summary on EFT calculations

Summary on EFT calculations

- EFT is as good as a renormalizable theory so long as we are content with finite accuracy required by experiments.
- Our working QFT is a tower of EFTs.
- In top-down approach:
 - From high to low scales, a heavy field is integrated out at the border of two consecutive EFTs.

Do matching calculation so that its effects on light fields are correctly reproduced.

Set $\mu = M$, mass of the heavy field, to avoid large log.

 Within one EFT, do RG running from μ = M to m, typical scale of a process under consideration.

 $\ln(M/m)$ is summed, improving simple perturbation theory calculations

ヘロト 人間 とくほ とくほ とう

Summary on EFT calculations

Summary on EFT calculations

EFT is as good as a renormalizable theory so long as we are content with finite accuracy required by experiments.

Our working QFT is a tower of EFTs.

In top-down approach:

• From high to low scales, a heavy field is integrated out at the border of two consecutive EFTs.

Do matching calculation so that its effects on light fields are correctly reproduced.

Set $\mu = M$, mass of the heavy field, to avoid large log.

• Within one EFT, do RG running from $\mu = M$ to *m*, typical scale of a process under consideration.

 $\ln(M/m)$ is summed, improving simple perturbation theory calculations.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Summary on EFT calculations

Summary on EFT calculations

- EFT is as good as a renormalizable theory so long as we are content with finite accuracy required by experiments.
- Our working QFT is a tower of EFTs.
- In top-down approach:
 - From high to low scales, a heavy field is integrated out at the border of two consecutive EFTs.

Do matching calculation so that its effects on light fields are correctly reproduced.

Set $\mu = M$, mass of the heavy field, to avoid large log.

• Within one EFT, do RG running from $\mu = M$ to *m*, typical scale of a process under consideration.

 $\ln(M/m)$ is summed, improving simple perturbation theory calculations.

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 ○ の Q ()

Summary on EFT calculations

Summary on EFT calculations

Matching and RG running can be done at various orders as desired.

If UV theory is unknown or not solvable, i.e., in bottom-up approach, we write down general EFT and leave its effective couplings as unknowns to be determined from measurements.

 Important ingredients:
 Symmetries: spacetime, gauge, global
 Power counting: here according to inverse powers of heavy mass, requiring mass-independent schemes

Summary on EFT calculations

Summary on EFT calculations

- Matching and RG running can be done at various orders as desired.
- If UV theory is unknown or not solvable, i.e., in bottom-up approach, we write down general EFT and leave its effective couplings as unknowns to be determined from measurements.

Important ingredients:
 Symmetries: spacetime, gauge, global
 Power counting: here according to inverse powers of heavy mass, requiring mass-independent schemes

Summary on EFT calculations

Summary on EFT calculations

- Matching and RG running can be done at various orders as desired.
- If UV theory is unknown or not solvable, i.e., in bottom-up approach, we write down general EFT and leave its effective couplings as unknowns to be determined from measurements.
- Important ingredients:

Symmetries: spacetime, gauge, global Power counting: here according to inverse powers of heavy mass, requiring mass-independent schemes