Lecture 3b on Standard Model Effective Field Theory

Yi Liao

Nankai Univ

Outline

1 Lecture 3b: Techniques in EFT

- RG running at one loop

■ Matching calculation at one loop
■ Summary on EFT calculations

Outline

1 Lecture 3b: Techniques in EFT

- RG running at one loop

■ Matching calculation at one loop

- Summary on EFT calculations

RG running at one loop

- Conventional perturbation theory may fail for a process that involves large ratios of scales, e.g., m / M, since $(g /(4 \pi))^{2} \ln (M / m)$ could be large.
m : typical external particle mass/momentum,
m : internal particle mass.
■ This issue can be best handled in EFT:
log-independent term by matching and
log enhancement by RG running.
Matching and RG running can be done independently and at different
orders as required

RG running at one loop

- Conventional perturbation theory may fail for a process that involves large ratios of scales, e.g., m / M, since $(g /(4 \pi))^{2} \ln (M / m)$ could be large.
m : typical external particle mass/momentum,
m : internal particle mass.
■ This issue can be best handled in EFT: log-independent term by matching and log enhancement by RG running. Matching and RG running can be done independently and at different orders as required.

RG running at one loop

■ Parameters do not exhibit scale dependence at tree level, though matching is done at M. - This is a loop effect.
■ In matching calculation, same renormalization scheme must be applied in UV and IR theories.
The integrated-out heavy field offers the only scale M. Thus large log can be avoided in matching by setting renormalization/matching scale $\mu=M$. - Can be seen at loop level.

■ Large $\log \ln (M / m)$ for a process at low energy will be accounted for by RG running from M to m.

RG running at one loop

■ Parameters do not exhibit scale dependence at tree level, though matching is done at M. - This is a loop effect.

- In matching calculation, same renormalization scheme must be applied in UV and IR theories.
The integrated-out heavy field offers the only scale M. Thus large log can be avoided in matching by setting renormalization/matching scale $\mu=M$. - Can be seen at loop level.

■ Large $\log \ln (M / m)$ for a process at low energy will be accounted for by RG running from M to m.

RG running at one loop

■ Parameters do not exhibit scale dependence at tree level, though matching is done at M. - This is a loop effect.
■ In matching calculation, same renormalization scheme must be applied in UV and IR theories.
The integrated-out heavy field offers the only scale M. Thus large log can be avoided in matching by setting renormalization/matching scale $\mu=M$. - Can be seen at loop level.

■ Large $\log \ln (M / m)$ for a process at low energy will be accounted for by RG running from M to m.

RG running at one loop - Example 1

Example 1: One-loop RG running of G_{S} in $\mathscr{L}_{2}(\phi, \psi)$
■ We use mass-independent renormalization scheme: dimensional regularization (DR) with minimal subtraction (MS)

- To do renormalization, consider $\mathscr{L}_{2}(\phi, \psi)$ in terms of bare quantities:

$$
i \bar{\psi}_{0} \phi \psi_{0}+\frac{1}{2} G_{S}^{0} \bar{\psi}_{0} \psi_{0} \bar{\psi}_{0} \psi_{0}-y_{\phi}^{0} \bar{\psi}_{0} \psi_{0} \phi_{0}+\text { terms not relevant here }
$$

■ In $d=4-2 \varepsilon$ dimensions, the dimensions of fields are modified to

Fields and couplings are renormalized as

where an arbitrary mass scale μ is introduced so that all renormalized parameters reserve their dimensions in 4 dim.

RG running at one loop - Example 1

Example 1: One-loop RG running of G_{S} in $\mathscr{L}_{2}(\phi, \psi)$
■ We use mass-independent renormalization scheme: dimensional regularization (DR) with minimal subtraction (MS)

- To do renormalization, consider $\mathscr{L}_{2}(\phi, \psi)$ in terms of bare quantities:

$$
\begin{equation*}
\mathscr{L}_{2}(\phi, \psi)=i \bar{\psi}_{0} \not \psi_{0}+\frac{1}{2} G_{S}^{0} \bar{\psi}_{0} \psi_{0} \bar{\psi}_{0} \psi_{0}-y_{\phi}^{0} \bar{\psi}_{0} \psi_{0} \phi_{0}+\text { terms not relevant here } \tag{1}
\end{equation*}
$$

- In $d=4-2 \varepsilon$ dimensions, the dimensions of fields are modified to

Fields and couplings are renormalized as

where an arbitrary mass scale $\boldsymbol{\mu}$ is introduced so that all renormalized parameters reserve their dimensions in 4 dim.

RG running at one loop - Example 1

Example 1: One-loop RG running of G_{S} in $\mathscr{L}_{2}(\phi, \psi)$
\square We use mass-independent renormalization scheme: dimensional regularization (DR) with minimal subtraction (MS)

- To do renormalization, consider $\mathscr{L}_{2}(\phi, \psi)$ in terms of bare quantities:

$$
\begin{equation*}
\mathscr{L}_{2}(\phi, \psi)=i \bar{\psi}_{0} \not \partial \psi_{0}+\frac{1}{2} G_{S}^{0} \bar{\psi}_{0} \psi_{0} \bar{\psi}_{0} \psi_{0}-y_{\phi}^{0} \bar{\psi}_{0} \psi_{0} \phi_{0}+\text { terms not relevant here } \tag{1}
\end{equation*}
$$

■ In $d=4-2 \varepsilon$ dimensions, the dimensions of fields are modified to

$$
\begin{equation*}
[\psi]=\frac{3}{2}-\varepsilon,[\phi]=1-\varepsilon \tag{2}
\end{equation*}
$$

Fields and couplings are renormalized as

$$
\begin{equation*}
\psi_{0}=\sqrt{Z_{\psi}} \psi, \phi_{0}=\sqrt{Z_{\phi} \phi}, G_{S}^{0}=Z_{G_{S}} \mu^{2 \varepsilon} G_{S}, y_{\phi}^{0}=Z_{y_{\phi}} \mu^{\varepsilon} y_{\phi} \tag{3}
\end{equation*}
$$

where an arbitrary mass scale μ is introduced so that all renormalized parameters reserve their dimensions in 4 dim.

RG running at one loop - Example 1

- zs deviate from unity because of quantum effects.

In perturbation theory $z-1$ is considered small. Here at one loop $z-1 \propto y_{\phi}^{2}$.

■ Thus $\mathscr{L}_{2}(\phi, \psi)$ splits into a renormalized piece and counterterm (c.t.) piece:

$\mathscr{L}_{2}(\phi, \psi)$

$$
\begin{aligned}
& i \bar{\psi} \not \partial \psi+\frac{1}{2} G_{S} \mu^{2 \varepsilon} \bar{\psi} \psi \bar{\psi} \psi-y_{\phi} \mu^{\varepsilon} \bar{\psi} \psi \phi \\
& +i\left[z_{\psi}-1\right] \bar{\psi} \not \partial \psi+\frac{1}{2}\left[z_{G_{S}} z_{\psi}^{2}-1\right] G_{S} \mu^{2 \varepsilon} \bar{\psi} \psi \bar{\psi} \psi \\
& -\left[z_{y_{\phi}} z_{\psi} z_{\phi}^{1 / 2}-1\right] y_{\phi} \mu^{\varepsilon} \bar{\psi} \psi \phi+\cdots
\end{aligned}
$$

c.t.: determined by renormalization conditions, and thus scheme dependent.
In MS, they contain only UV divergent terms.

RG running at one loop - Example 1

■ zs deviate from unity because of quantum effects.
In perturbation theory $z-1$ is considered small. Here at one loop $z-1 \propto y_{\phi}^{2}$.
■ Thus $\mathscr{L}_{2}(\phi, \psi)$ splits into a renormalized piece and counterterm (c.t.) piece:

$$
\begin{align*}
\mathscr{L}_{2}(\phi, \psi)= & i Z_{\psi} \bar{\psi} \not \partial \psi+\frac{1}{2} Z_{G_{S}} z_{\psi}^{2} G_{S} \mu^{2 \varepsilon} \bar{\psi} \psi \bar{\psi} \psi-Z_{y_{\phi}} z_{\psi} z_{\phi}^{1 / 2} y_{\phi} \mu^{\varepsilon} \bar{\psi} \psi \phi+\cdots \tag{4}\\
= & i \bar{\psi} \not \partial \psi+\frac{1}{2} G_{S} \mu^{2 \varepsilon} \bar{\psi} \psi \bar{\psi} \psi-y_{\phi} \mu^{\varepsilon} \bar{\psi} \psi \phi \\
& +i\left[z_{\psi}-1\right] \bar{\psi} \not \partial \psi+\frac{1}{2}\left[z_{G_{S}} z_{\psi}^{2}-1\right] G_{S} \mu^{2 \varepsilon} \bar{\psi} \psi \bar{\psi} \psi \\
& -\left[z_{y_{\phi}} z_{\psi} z_{\phi}^{1 / 2}-1\right] y_{\phi} \mu^{\varepsilon} \bar{\psi} \psi \phi+\cdots \tag{5}
\end{align*}
$$

c.t.: determined by renormalization conditions, and thus scheme dependent.
In MS, they contain only UV divergent terms.

RG running at one loop - Example 1

- To compute RG equations (RGE) for G_{s}, start from the fact that bare quantities are independent of μ :

$$
\begin{align*}
& 0=\mu \frac{d G_{S}^{0}}{d \mu}=Z_{G_{S}} \mu^{2 \varepsilon} \mu \frac{d G_{S}}{d \mu}+\mu^{2 \varepsilon} G_{S} \mu \frac{d Z_{G_{S}}}{d \mu}+2 \varepsilon Z_{G_{S}} \mu^{2 \varepsilon} G_{S} \tag{6}\\
\Rightarrow \quad & \beta_{G_{S}}=\mu \frac{d G_{S}}{d \mu}=-G_{S} \mu \frac{d \ln Z_{G_{S}}}{d \mu}-2 \varepsilon G_{S} \tag{7}
\end{align*}
$$

In mass-independent schemes, μ dependence enters only through couplings.
■ Here we are computing RGE for G_{S} due to Yukawa coupling y_{ϕ} of ϕ with

RG running at one loop - Example 1

- To compute RG equations (RGE) for G_{s}, start from the fact that bare quantities are independent of μ :

$$
\begin{align*}
& 0=\mu \frac{d G_{S}^{0}}{d \mu}=Z_{G_{S}} \mu^{2 \varepsilon} \mu \frac{d G_{S}}{d \mu}+\mu^{2 \varepsilon} G_{S} \mu \frac{d Z_{G_{S}}}{d \mu}+2 \varepsilon Z_{G_{S}} \mu^{2 \varepsilon} G_{S} \tag{6}\\
\Rightarrow \quad & \beta_{G_{S}}=\mu \frac{d G_{S}}{d \mu}=-G_{S} \mu \frac{d \ln Z_{G_{S}}}{d \mu}-2 \varepsilon G_{S} \tag{7}
\end{align*}
$$

In mass-independent schemes, μ dependence enters only through couplings.
■ Here we are computing RGE for G_{S} due to Yukawa coupling y_{ϕ} of ϕ with ψ, i.e.,

$$
\begin{equation*}
\mu \frac{d \ln Z_{G_{S}}}{d \mu} \propto \mu \frac{d y_{\phi}}{d \mu}=\beta_{y_{\phi}} \tag{8}
\end{equation*}
$$

RG running at one loop - Example 1

- $\beta_{y_{\phi}}$ can be manipulated as for $\beta_{G_{s}}$:

$$
\begin{align*}
& 0=\mu \frac{d y_{\phi}^{0}}{d \mu}=Z_{y_{\phi}} \mu^{\varepsilon} \mu \frac{d y_{\phi}}{d \mu}+\mu^{\varepsilon} y_{\phi} \mu \frac{d Z_{y_{\phi}}}{d \mu}+\varepsilon Z_{y_{\phi}} \mu^{\varepsilon} y_{\phi} \tag{9}\\
\Rightarrow \quad & \beta_{y_{\phi}}=-y_{\phi} \mu \frac{d \ln Z_{y_{\phi}}}{d \mu}-\varepsilon y_{\phi} \tag{10}
\end{align*}
$$

Again, the first term is of higher order than the second term, and can be dropped for our purpose here.
■ In summary, the leading term is

Thus, to get RG running of G_{S}, we have to determine $Z_{G_{S}}$.

RG running at one loop - Example 1

- $\beta_{y_{\phi}}$ can be manipulated as for $\beta_{G_{s}}$:

$$
\begin{align*}
& 0=\mu \frac{d y_{\phi}^{0}}{d \mu}=Z_{y_{\phi}} \mu^{\varepsilon} \mu \frac{d y_{\phi}}{d \mu}+\mu^{\varepsilon} y_{\phi} \mu \frac{d Z_{y_{\phi}}}{d \mu}+\varepsilon Z_{y_{\phi}} \mu^{\varepsilon} y_{\phi} \tag{9}\\
\Rightarrow \quad & \beta_{y_{\phi}}=-y_{\phi} \mu \frac{d \ln Z_{y_{\phi}}}{d \mu}-\varepsilon y_{\phi} \tag{10}
\end{align*}
$$

Again, the first term is of higher order than the second term, and can be dropped for our purpose here.
■ In summary, the leading term is

$$
\begin{align*}
& \beta_{G_{S}}=-G_{S} \mu \frac{d y_{\phi}}{d \mu} \frac{d \ln Z_{G_{S}}}{d y_{\phi}}-2 \varepsilon G_{S}=-G_{S} \beta_{y_{\phi}} \frac{d \ln Z_{G_{S}}}{d y_{\phi}}-2 \varepsilon G_{S} \tag{11}\\
& \Rightarrow \quad \beta_{G_{S}}=\lim _{\varepsilon \rightarrow 0}\left[-G_{S}\left(-\varepsilon y_{\phi}\right) \frac{d \ln Z_{G_{S}}}{d y_{\phi}}\right] \tag{12}
\end{align*}
$$

Thus, to get RG running of G_{S}, we have to determine $Z_{G_{S}}$.

RG running at one loop - Example 1

■ Cautions:
Renormalized quantities are regular in the limit $\varepsilon \rightarrow 0$.
The limit can only be properly taken in the end of calculation.
■ But to get $z_{G_{S}}$, we also need z_{ψ}. Easiest thing first: z_{ψ}.

We need the term $\propto p$:
diagram

RG running at one loop - Example 1

- Cautions:

Renormalized quantities are regular in the limit $\varepsilon \rightarrow 0$.
The limit can only be properly taken in the end of calculation.
$■$ But to get $z_{G_{S}}$, we also need z_{ψ}. Easiest thing first: z_{ψ}.

We need the term $\propto p$:

$$
\begin{aligned}
\text { diagram } & =\int \frac{d^{d} k}{(2 \pi)^{d}}\left(-i y_{\phi} \mu^{\varepsilon}\right) \frac{i}{k+\phi}\left(-i y_{\phi} \mu^{\varepsilon}\right) \frac{i}{k^{2}-m^{2}} \\
& =y_{\phi}^{2} \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k+\phi}{(k+p)^{2}\left(k^{2}-m^{2}\right)}
\end{aligned}
$$

RG running at one loop - Example 1

Use Feynman parameter x to combine the two denominators:

$$
\begin{aligned}
& \frac{1}{(k+p)^{2}\left(k^{2}-m^{2}\right)}=\int_{0}^{1} d x \frac{1}{\left[x(k+p)^{2}+(1-x)\left(k^{2}-m^{2}\right)\right]^{2}} \\
= & \int_{0}^{1} d x \frac{1}{\left[\ell^{2}-\Delta+i 0^{+}\right]^{2}}, \ell=k+x p, \Delta=m^{2}(1-x)-p^{2} x(1-x)
\end{aligned}
$$

Replace $k=\ell-x p$:

$$
\begin{aligned}
\text { diagram } & =y_{\phi}^{2} \mu^{2 \varepsilon} \int_{0}^{1} d x \int \frac{d^{d} \ell}{(2 \pi)^{d}} \frac{\ell+(1-x) \not p}{\left[\ell^{2}-\Delta+i 0^{+}\right]^{2}} \\
& =p y_{\phi}^{2} \int_{0}^{1} d x(1-x) \mu^{2 \varepsilon} \int \frac{d^{d} \ell}{(2 \pi)^{d}} \frac{1}{\left[\ell^{2}-\Delta+i 0^{+}\right]^{2}}
\end{aligned}
$$

RG running at one loop - Example 1

Use standard loop integrals in $d=4-2 \varepsilon$ dims:

$$
\begin{align*}
& \mu^{2 \varepsilon} \int \frac{d^{d} \ell}{(2 \pi)^{d}} \frac{1}{\left[\ell^{2}-\Delta+i 0^{+}\right]^{2}}=\frac{i}{(4 \pi)^{2}}\left[\frac{4 \pi \mu^{2}}{\Delta}\right]^{\varepsilon} \Gamma(\varepsilon) \\
= & \frac{i}{(4 \pi)^{2}}\left[\frac{1}{\varepsilon}-\gamma_{E}+\ln \frac{4 \pi \mu^{2}}{\Delta}+O(\varepsilon)\right] \tag{13}
\end{align*}
$$

We finally get

$$
\text { diagram }=p y_{\phi}^{2} \frac{i}{(4 \pi)^{2}} \frac{1}{\varepsilon} \int_{0}^{1} d x(1-x)+\text { finite }=p y_{\phi}^{2} \frac{i}{(4 \pi)^{2}} \frac{1}{\varepsilon} \frac{1}{2}+\text { finite }
$$

Requiring the c.t. diagram

to cancel the UV divergent term (MS), we obtain

$$
\begin{equation*}
i\left(Z_{\psi}-1\right) p+\not p y_{\phi}^{2} \frac{i}{(4 \pi)^{2}} \frac{1}{\varepsilon} \frac{1}{2}=0 \Rightarrow\left(Z_{\psi}-1\right)=-\frac{1}{2} \frac{y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon} \tag{14}
\end{equation*}
$$

RG running at one loop - Example 1

■ Now we compute $Z_{G_{S}}$.
The one-loop $\bar{\psi} \psi \bar{\psi} \psi$ diagrams due to y_{ϕ} couplings in EFT_{2} are

■ Focus on $\bar{\psi}\left(p_{3}\right) \psi\left(p_{1}\right) \bar{\psi}\left(p_{4}\right) \psi\left(p_{2}\right)$, ignoring trivial crossing for both one-loop diagrams and c.t.
■ These diagrams are at most logarithmically divergent.

- We are interested only in divergent terms which are independent of external momenta. We can thus set $p_{i}=0$.

RG running at one loop - Example 1

- Now we compute $Z_{G_{s}}$.

The one-loop $\bar{\psi} \psi \bar{\psi} \psi$ diagrams due to y_{ϕ} couplings in EFT_{2} are

■ Focus on $\bar{\psi}\left(p_{3}\right) \psi\left(p_{1}\right) \bar{\psi}\left(p_{4}\right) \psi\left(p_{2}\right)$, ignoring trivial crossing for both one-loop diagrams and c.t.
■ These diagrams are at most logarithmically divergent.
■ We are interested only in divergent terms which are independent of external momenta. We can thus set $p_{i}=0$.

RG running at one loop - Example 1

- Now we compute $Z_{G_{s}}$.

The one-loop $\bar{\psi} \psi \bar{\psi} \psi$ diagrams due to y_{ϕ} couplings in EFT_{2} are

■ Focus on $\bar{\psi}\left(p_{3}\right) \psi\left(p_{1}\right) \bar{\psi}\left(p_{4}\right) \psi\left(p_{2}\right)$, ignoring trivial crossing for both one-loop diagrams and c.t.

- These diagrams are at most logarithmically divergent.

■ We are interested only in divergent terms which are independent of
external momenta.
We can thus set $p_{i}=0$.

RG running at one loop - Example 1

- Now we compute $z_{G_{s}}$.

The one-loop $\bar{\psi} \psi \bar{\psi} \psi$ diagrams due to y_{ϕ} couplings in EFT_{2} are

■ Focus on $\bar{\psi}\left(p_{3}\right) \psi\left(p_{1}\right) \bar{\psi}\left(p_{4}\right) \psi\left(p_{2}\right)$, ignoring trivial crossing for both one-loop diagrams and c.t.

- These diagrams are at most logarithmically divergent.

■ We are interested only in divergent terms which are independent of external momenta.
We can thus set $p_{i}=0$.

RG running at one loop - Example 1

The diagrams give

$$
\begin{align*}
\operatorname{diag~a} & =2 \times i G_{S} \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \bar{u}_{3}\left(-i y_{\phi} \mu^{\varepsilon}\right) \frac{i}{k} \frac{i}{\not K}\left(-i y_{\phi} \mu^{\varepsilon}\right) u_{1} \frac{i}{k^{2}-m^{2}} \bar{u}_{4} u_{2} \\
& =2 i G_{S} \mu^{2 \varepsilon}\left(\bar{u}_{3} u_{1} \bar{u}_{4} u_{2}\right) \times i y_{\phi}^{2} \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{k^{2}\left(k^{2}-m^{2}\right)} \\
& =2 i G_{S} \mu^{2 \varepsilon}\left(\bar{u}_{3} u_{1} \bar{u}_{4} u_{2}\right) \times \frac{-y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon}+\text { finite } \tag{15}\\
\text { diag b } & =2 \times i G_{S} \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \bar{u}_{3} \frac{i}{k}\left(-i y_{\phi} \mu^{\varepsilon}\right) u_{1} \bar{u}_{4} \frac{i}{-\not K}\left(-i y_{\phi} \mu^{\varepsilon}\right) u_{2} \frac{i}{k^{2}-m^{2}} \tag{16}\\
\operatorname{diag~c} & =2 \times i G_{S} \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \bar{u}_{3} \frac{i}{k}\left(-i y_{\phi} \mu^{\varepsilon}\right) u_{1} \bar{u}_{4} \frac{i}{+\not K}\left(-i y_{\phi} \mu^{\varepsilon}\right) u_{2} \frac{i}{k^{2}-m^{2}} \tag{17}
\end{align*}
$$

diagrams b and c cancel each other!

RG running at one loop - Example 1

- If diagrams b and c did not cancel, they would induce a new structure

$$
\bar{u}_{3} \gamma_{\mu} u_{1} \bar{u}_{4} \gamma^{\mu} u_{2}
$$

corresponding to the effective int. involving the dim-6 operator:

$$
\begin{equation*}
\mathscr{O}_{V}=\bar{\psi} \gamma_{\mu} \psi \bar{\psi} \gamma^{\mu} \psi \tag{18}
\end{equation*}
$$

This is called mixing of operators under renormalization.
■ Back to the issue. UV div in diag abc is required to cancel c.t.:

RG running at one loop - Example 1

- If diagrams b and c did not cancel, they would induce a new structure

$$
\bar{u}_{3} \gamma_{\mu} u_{1} \bar{u}_{4} \gamma^{\mu} u_{2}
$$

corresponding to the effective int. involving the dim-6 operator:

$$
\begin{equation*}
\mathscr{O}_{V}=\bar{\psi} \gamma_{\mu} \psi \bar{\psi} \gamma^{\mu} \psi \tag{18}
\end{equation*}
$$

This is called mixing of operators under renormalization.

- Back to the issue. UV div in diag abc is required to cancel c.t.:

$$
\begin{align*}
& \text { c.t. diagram for } \bar{\psi} \psi \bar{\psi} \psi=i\left(Z_{G_{S}} Z_{\psi}^{2}-1\right) G_{S} \mu^{2 \varepsilon}\left(\bar{u}_{3} u_{1} \bar{u}_{4} u_{2}\right)+\text { crossing } \tag{19}\\
\Rightarrow & i\left(Z_{G_{S}} Z_{\psi}^{2}-1\right) G_{S} \mu^{2 \varepsilon}+2 i G_{S} \mu^{2 \varepsilon} \frac{-y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon}=0 \\
\Rightarrow & \left(Z_{G_{S}} Z_{\psi}^{2}-1\right)=2 \frac{y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon} \tag{20}
\end{align*}
$$

RG running at one loop - Example 1

■ In perturbation theory $z-1$ is considered small though it may contain $1 / \varepsilon$, because $\varepsilon \rightarrow 0$ is taken only in the end of calculation.

$$
\begin{align*}
Z_{G_{s}} & =\left[1+2 \frac{y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon}\right]\left[1+\left(Z_{\psi}-1\right)\right]^{-2} \\
& \approx 1+2 \frac{y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon}-2\left(Z_{\psi}-1\right)=1+\frac{3 y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon} \tag{21}
\end{align*}
$$

■ After this lengthy calculation, we obtain at one-loop level:

and RGE for G_{S} exact to one loop becomes

RG running at one loop - Example 1

■ In perturbation theory $z-1$ is considered small though it may contain $1 / \varepsilon$, because $\varepsilon \rightarrow 0$ is taken only in the end of calculation.

$$
\begin{align*}
Z_{G_{s}} & =\left[1+2 \frac{y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon}\right]\left[1+\left(Z_{\psi}-1\right)\right]^{-2} \\
& \approx 1+2 \frac{y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon}-2\left(Z_{\psi}-1\right)=1+\frac{3 y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon} \tag{21}
\end{align*}
$$

- After this lengthy calculation, we obtain at one-loop level:

$$
\begin{equation*}
\beta_{G_{S}}=G_{S} \lim _{\varepsilon \rightarrow 0}\left[\varepsilon y_{\phi} \frac{d \ln Z_{G_{S}}}{d y_{\phi}}\right] \approx G_{S} \lim _{\varepsilon \rightarrow 0}\left[\varepsilon y_{\phi} \frac{d Z_{G_{S}}}{d y_{\phi}}\right]=G_{S} \frac{6 y_{\phi}^{2}}{(4 \pi)^{2}} \tag{22}
\end{equation*}
$$

and RGE for G_{S} exact to one loop becomes

$$
\begin{equation*}
\mu \frac{d G_{S}}{d \mu}=\frac{6 y_{\phi}^{2}}{(4 \pi)^{2}} G_{S} \tag{23}
\end{equation*}
$$

RG running at one loop - Example 1

- Are we done?

Not really. There is also μ dependence in coupling y_{ϕ}.
If we ignore it together with μ dependence in G_{S} on rhs, we get in the so-called leading log approximation:

$$
\begin{equation*}
G_{S}(\mu)-G_{S}(M)=\frac{6 y_{\phi}^{2}}{(4 \pi)^{2}} G_{S}(M) \ln \frac{\mu}{M} \tag{24}
\end{equation*}
$$

- We can do better by including μ dependence on rhs of RGE. For this we need the β function for y_{ϕ}, again due to y_{ϕ} interaction.
■ Exercise - verify that

RG running at one loop - Example 1

- Are we done?

Not really. There is also μ dependence in coupling y_{ϕ}.
If we ignore it together with μ dependence in G_{S} on rhs, we get in the so-called leading log approximation:

$$
\begin{equation*}
G_{S}(\mu)-G_{S}(M)=\frac{6 y_{\phi}^{2}}{(4 \pi)^{2}} G_{S}(M) \ln \frac{\mu}{M} \tag{24}
\end{equation*}
$$

■ We can do better by including μ dependence on rhs of RGE.
For this we need the β function for y_{ϕ}, again due to y_{ϕ} interaction.
■ Exercise - verify that

RG running at one loop - Example 1

- Are we done?

Not really. There is also μ dependence in coupling y_{ϕ}.
If we ignore it together with μ dependence in G_{S} on rhs, we get in the so-called leading log approximation:

$$
\begin{equation*}
G_{S}(\mu)-G_{S}(M)=\frac{6 y_{\phi}^{2}}{(4 \pi)^{2}} G_{S}(M) \ln \frac{\mu}{M} \tag{24}
\end{equation*}
$$

■ We can do better by including μ dependence on rhs of RGE.
For this we need the β function for y_{ϕ}, again due to y_{ϕ} interaction.

- Exercise - verify that

$$
\begin{equation*}
\beta_{y_{\phi}}=5 \frac{y_{\phi}^{3}}{(4 \pi)^{2}} \tag{25}
\end{equation*}
$$

RG running at one loop - Example 1

- Hints - Find first

$$
Z_{\phi}-1=-2 \frac{y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon}, Z_{y_{\phi}} Z_{\psi} Z_{\phi}^{1 / 2}-1=\frac{y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon} \Rightarrow \quad Z_{y_{\phi}}-1=\frac{5}{2} \frac{y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon}
$$

Then, proceed as follows

$$
\begin{align*}
\quad \beta_{y_{\phi}} & =-y_{\phi} \mu \frac{d \ln z_{y_{\phi}}}{d \mu}-\varepsilon y_{\phi}=-y_{\phi} \beta_{y_{\phi}} \frac{d \ln Z_{y_{\phi}}}{d y_{\phi}}-\varepsilon y_{\phi} \\
\Rightarrow \quad \beta_{y_{\phi}} & =\lim _{\varepsilon \rightarrow 0}\left(-y_{\phi}\right)\left(-\varepsilon y_{\phi}\right) \frac{d \ln Z_{y_{\phi}}}{d y_{\phi}}=5 \frac{y_{\phi}^{3}}{(4 \pi)^{2}} \tag{26}
\end{align*}
$$

- Important

Everything is manipulated for $\varepsilon \neq 0$ and in the spirit of pert. theory
Only at the end of the day we take $\varepsilon \rightarrow 0$ for renormalizaed quantities.

RG running at one loop - Example 1

■ Hints - Find first

$$
Z_{\phi}-1=-2 \frac{y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon}, Z_{y_{\phi}} Z_{\psi} Z_{\phi}^{1 / 2}-1=\frac{y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon} \Rightarrow \quad Z_{y_{\phi}}-1=\frac{5}{2} \frac{y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon}
$$

Then, proceed as follows

$$
\begin{align*}
& \beta_{y_{\phi}}=-y_{\phi} \mu \frac{d \ln z_{y_{\phi}}}{d \mu}-\varepsilon y_{\phi}=-y_{\phi} \beta_{y_{\phi}} \frac{d \ln z_{y_{\phi}}}{d y_{\phi}}-\varepsilon y_{\phi} \\
\Rightarrow \quad & \beta_{y_{\phi}}=\lim _{\varepsilon \rightarrow 0}\left(-y_{\phi}\right)\left(-\varepsilon y_{\phi}\right) \frac{d \ln z_{y_{\phi}}}{d y_{\phi}}=5 \frac{y_{\phi}^{3}}{(4 \pi)^{2}} \tag{26}
\end{align*}
$$

- Important -

Everything is manipulated for $\varepsilon \neq 0$ and in the spirit of pert. theory Only at the end of the day we take $\varepsilon \rightarrow 0$ for renormalizaed quantities.

RG running at one loop - Example 1

■ Comments:

1. β functions depend on renormalization schemes applied, mass dependent or independent.

- In mass-dependent schemes β s vary smoothly in scale. See A. Manohar, arXiv:hep-ph/9606222.
- In mass-independent schemes β s jump when crossing threshold of a heavy particle which is to be integrated out.
- Although physical results are independent of schemes, mass-independent ones better suit the need of modern QFT: simpler topology of diagrams though more divergent; only UV divergence required for β s vs finite terms required in mass-dependent schemes.

RG running at one loop - Example 1

■ Comments:

1. β functions depend on renormalization schemes applied, mass dependent or independent.

- In mass-dependent schemes β s vary smoothly in scale. See A. Manohar, arXiv:hep-ph/9606222.
- In mass-independent schemes β s jump when crossing threshold of a heavy particle which is to be integrated out.
- Although physical results are independent of schemes,
mass-independent ones better suit the need of modern QFT:
simpler topology of diagrams though more divergent;
only UV divergence required for β s vs finite terms required in
mass-dependent schemes.

RG running at one loop - Example 1

- Comments:

1. β functions depend on renormalization schemes applied, mass dependent or independent.

- In mass-dependent schemes β s vary smoothly in scale. See A. Manohar, arXiv:hep-ph/9606222.
- In mass-independent schemes β s jump when crossing threshold of a heavy particle which is to be integrated out.
- Although physical results are independent of schemes, mass-independent ones better suit the need of modern QFT: simpler topology of diagrams though more divergent; only UV divergence required for βs vs finite terms required in mass-dependent schemes.

RG running at one loop - Example 1

2. There is no essential difference in computing RGE between renormalizable and nonrenormalizable couplings. -
EFTs behave at low energies as well as renormalizable ones!

- Back to our main issue. RG running of 'effective coupling' G_{S} can be better done by including RG running of 'fundamental coupling' y_{ϕ} :

$$
\left\{\begin{array}{l}
\mu \frac{d G_{S}}{d \mu}=6 \frac{y_{\phi}^{2}}{(4 \pi)^{2}} G_{S} \\
\mu \frac{d y_{\phi}}{d \mu}=5 \frac{y_{\phi}^{3}}{(4 \pi)^{2}}
\end{array}\right.
$$

■ The above is very in QFT. We solve more generally the following:

RG running at one loop - Example 1

2. There is no essential difference in computing RGE between renormalizable and nonrenormalizable couplings. -
EFTs behave at low energies as well as renormalizable ones!
■ Back to our main issue. RG running of 'effective coupling' G_{S} can be better done by including RG running of 'fundamental coupling' y_{ϕ} :

$$
\left\{\begin{array}{l}
\mu \frac{d G_{S}}{d \mu}=6 \frac{y_{\phi}^{2}}{(4 \pi)^{2}} G_{S} \\
\mu \frac{d y_{\phi}}{d \mu}=5 \frac{y_{\phi}^{3}}{(4 \pi)^{2}}
\end{array}\right.
$$

- The above is very in QFT. We solve more generally the following:

$$
\left\{\begin{array}{l}
\mu \frac{d \ln G}{d \mu}=a g^{2} \tag{27}\\
\mu \frac{d g^{2}}{d \mu}=b\left(g^{2}\right)^{2}
\end{array} \quad\left(G \rightarrow G_{S}, g \rightarrow y_{\phi} ; a \rightarrow \frac{6}{(4 \pi)^{2}}, b \rightarrow \frac{10}{(4 \pi)^{2}}\right)\right.
$$

RG running at one loop - Example 1

■ Take their ratio:

$$
\begin{align*}
& \frac{d \ln G}{d g^{2}}=\frac{a}{b} \frac{1}{g^{2}} \Rightarrow d \ln G=\frac{a}{b} d \ln \left(g^{2}\right) \\
\Rightarrow & \ln \frac{G\left(\mu_{1}\right)}{G\left(\mu_{2}\right)}=\frac{a}{b} \ln \frac{g^{2}\left(\mu_{1}\right)}{g^{2}\left(\mu_{2}\right)} \Rightarrow \frac{G\left(\mu_{1}\right)}{G\left(\mu_{2}\right)}=\left[\frac{g^{2}\left(\mu_{1}\right)}{g^{2}\left(\mu_{2}\right)}\right]^{a / b} \tag{28}
\end{align*}
$$

Summation of leading log to all orders!
■ Exercise - verify that expansion of the above to leading order in $g^{2}\left(\mu_{2}\right) \ln \left(\mu_{1} / \mu_{2}\right)$ recovers the previous result in leading-log approximation. Hint - first solve $g^{2}(\mu)$ from its RGE.

RG running at one loop - Example 1

■ Take their ratio:

$$
\begin{align*}
& \frac{d \ln G}{d g^{2}}=\frac{a}{b} \frac{1}{g^{2}} \Rightarrow d \ln G=\frac{a}{b} d \ln \left(g^{2}\right) \\
\Rightarrow \quad & \ln \frac{G\left(\mu_{1}\right)}{G\left(\mu_{2}\right)}=\frac{a}{b} \ln \frac{g^{2}\left(\mu_{1}\right)}{g^{2}\left(\mu_{2}\right)} \Rightarrow \frac{G\left(\mu_{1}\right)}{G\left(\mu_{2}\right)}=\left[\frac{g^{2}\left(\mu_{1}\right)}{g^{2}\left(\mu_{2}\right)}\right]^{a / b} \tag{28}
\end{align*}
$$

Summation of leading log to all orders!
■ Exercise - verify that expansion of the above to leading order in $g^{2}\left(\mu_{2}\right) \ln \left(\mu_{1} / \mu_{2}\right)$ recovers the previous result in leading-log approximation. Hint - first solve $g^{2}(\mu)$ from its RGE.

RG running at one loop - Example 2

Example 2: Mixing of operators under renormalization

Operators of same dim and symmetry can mix under renormalization.

- To see this in a simple framework, consider the EFT of ϕ, ψ :

$$
\begin{align*}
\mathscr{L}_{\mathrm{EFT}}(\phi, \psi)= & i \bar{\psi} \not \partial \psi+\frac{1}{2} G_{V} \mathscr{O}_{V}+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-y_{\phi} \bar{\psi} \psi \phi+\cdots, \tag{29}\\
& \mathscr{O}_{V}=\bar{\psi} \gamma^{\mu} \psi \bar{\psi} \gamma_{\mu} \psi \tag{30}
\end{align*}
$$

where the effective interaction $G_{V} \mathscr{O}_{V} / 2$ may have arisen from integrating out a heavy vector boson of mass M similarly to the case of 4-Fermi weak interactions.

■ Consider RG running of G_{v} due to y_{0} coupling.

RG running at one loop - Example 2

Example 2: Mixing of operators under renormalization

Operators of same dim and symmetry can mix under renormalization.

- To see this in a simple framework, consider the EFT of ϕ, ψ :

$$
\begin{align*}
\mathscr{L}_{\mathrm{EFT}}(\phi, \psi)= & i \bar{\psi} \not \partial \psi+\frac{1}{2} G_{V} \mathscr{O}_{V}+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-y_{\phi} \bar{\psi} \psi \phi+\cdots, \tag{29}\\
& \mathscr{O}_{V}=\bar{\psi} \gamma^{\mu} \psi \bar{\psi} \gamma_{\mu} \psi \tag{30}
\end{align*}
$$

where the effective interaction $G_{V} \mathscr{O}_{V} / 2$ may have arisen from integrating out a heavy vector boson of mass M similarly to the case of 4-Fermi weak interactions.
■ Consider RG running of G_{V} due to y_{ϕ} coupling.

RG running at one loop - Example 2

■ It turns out that its running is not closed!
It induces at one loop a new interaction proportional to

$$
\begin{equation*}
\mathscr{O}_{T}=\bar{\psi} \sigma^{\mu v} \psi \bar{\psi} \sigma_{\mu v} \psi \tag{31}
\end{equation*}
$$

- In principle other forms can also join mixing at higher orders.

We work at one loop where O_{V} and O_{T} are closed under renor.
■ Consistency therefore requires that we include both operators:

$$
\begin{equation*}
\mathscr{L}_{\mathrm{EFT}}(\phi, \psi)=i \bar{\psi} \phi \psi+\frac{1}{2} G_{V} \mathscr{O}_{V}+\frac{1}{2} G_{T} \mathscr{O}_{T}+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-y_{\phi} \bar{\psi} \psi \phi+ \tag{32}
\end{equation*}
$$

because we generally have $G_{T}(\mu) G_{T}(\mu) \neq 0$ even if $G_{T}(M)=0$.

RG running at one loop - Example 2

■ It turns out that its running is not closed!
It induces at one loop a new interaction proportional to

$$
\begin{equation*}
\mathscr{O}_{T}=\bar{\psi} \sigma^{\mu v} \psi \bar{\psi} \sigma_{\mu \nu} \psi \tag{31}
\end{equation*}
$$

- In principle other forms can also join mixing at higher orders. We work at one loop where O_{V} and O_{T} are closed under renor.
■ Consistency therefore requires that we include both operators:

$$
\begin{equation*}
\mathscr{C}_{\text {EFT }}(\phi, \psi)=i \bar{\psi} \mathscr{T} \psi+\frac{1}{2} G_{V} \mathscr{O}_{V}+\frac{1}{2} G_{T} \mathscr{O}_{T} \tag{32}
\end{equation*}
$$

because we generally have $G_{T}(\mu) G_{T}(\mu) \neq 0$ even if $G_{T}(M)=0$.

RG running at one loop - Example 2

■ It turns out that its running is not closed!
It induces at one loop a new interaction proportional to

$$
\begin{equation*}
\mathscr{O}_{T}=\bar{\psi} \sigma^{\mu v} \psi \bar{\psi} \sigma_{\mu \nu} \psi \tag{31}
\end{equation*}
$$

- In principle other forms can also join mixing at higher orders.

We work at one loop where O_{V} and O_{T} are closed under renor.

- Consistency therefore requires that we include both operators:

$$
\begin{equation*}
\mathscr{L}_{\mathrm{EFT}}(\phi, \psi)=i \bar{\psi} \not \partial \psi+\frac{1}{2} G_{V} \mathscr{O}_{V}+\frac{1}{2} G_{T} \mathscr{O}_{T}+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-y_{\phi} \bar{\psi} \psi \phi+\cdots, \tag{32}
\end{equation*}
$$

because we generally have $G_{T}(\mu) G_{T}(\mu) \neq 0$ even if $G_{T}(M)=0$.

RG running at one loop - Example 2

■ Introduce c.t. as before to both interactions:

$$
\begin{equation*}
\mathscr{L}_{\mathrm{EFT}}(\phi, \psi) \quad \supset \quad+\frac{1}{2}\left[Z_{G_{V}} z_{\psi}^{2}-1\right] G_{V} \mu^{2 \varepsilon} \mathscr{O}_{V}+\frac{1}{2}\left[Z_{G_{T}} Z_{\psi}^{2}-1\right] G_{T} \mu^{2 \varepsilon} \mathscr{O}_{T} \tag{33}
\end{equation*}
$$

Z_{ψ} was known previously.

$$
\begin{array}{ccc}
\text { c.t. } & \text { to cancel UV div with one insertion of } & \text { that can induce an } \\
{\left[Z_{G_{V}} Z_{\psi}^{2}-1\right] G_{V} \mu^{2 \varepsilon}} & \text { either } \mathscr{O}_{V} \text { or } \mathscr{O}_{T} & \mathscr{O}_{V} \tag{V}\\
{\left[Z_{G_{T}} z_{\psi}^{2}-1\right] G_{T} \mu^{2 \varepsilon}} & \text { either } \mathscr{O}_{V} \text { or } \mathscr{O}_{T} & \mathscr{O}_{T}
\end{array}
$$

Insertion of $G_{V} \mathscr{O}_{V}$:

RG running at one loop - Example 2

We set $p_{i}=0$, and it is not necessary to include crossing diagrams.

$$
\begin{aligned}
\text { diagram a } & =2 \times i G_{V} \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \bar{u}_{3}\left(-i y_{\phi} \mu^{\varepsilon}\right) \frac{i}{\nmid} \gamma_{\mu} \frac{i}{\not k}\left(-i y_{\phi} \mu^{\varepsilon}\right) u_{1} \frac{i}{k^{2}-m^{2}} \bar{u}_{4} \gamma^{u} u_{2} \\
& =-2 G_{V} \mu^{2 \varepsilon} y_{\phi}^{2}\left(\bar{u}_{3} \gamma_{\alpha} \gamma_{\mu} \gamma_{\beta} u_{1}\right)\left(\bar{u}_{4} \gamma^{\mu} u_{2}\right) \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\alpha} k^{\beta}}{\left(k^{2}\right)^{2}\left(k^{2}-m^{2}\right)}(34)
\end{aligned}
$$

Using symmetric loop integration,

$$
\begin{align*}
& \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\alpha} k^{\beta}}{\left(k^{2}\right)^{2}\left(k^{2}-m^{2}\right)}=\frac{1}{d} g^{\alpha \beta} \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left(k^{2}\right)\left(k^{2}-m^{2}\right)} \\
= & \frac{1}{4} g^{\alpha \beta} \frac{i}{(4 \pi)^{2}} \frac{1}{\varepsilon}+\text { finite } \tag{35}
\end{align*}
$$

and

$$
\begin{equation*}
\gamma_{\alpha} \gamma_{\mu} \gamma_{\beta} g^{\alpha \beta}=(2-d) \gamma_{\mu}=(-2+2 \varepsilon) \gamma_{\mu} \tag{36}
\end{equation*}
$$

RG running at one loop - Example 2

we have finally

$$
\begin{equation*}
\text { diagram } \mathrm{a}=-2 G_{V} \mu^{2 \varepsilon} y_{\phi}^{2}(-2)\left(\gamma_{\mu} \otimes \gamma^{\mu}\right) \frac{1}{4} \frac{i}{(4 \pi)^{2}} \frac{1}{\varepsilon}+\text { finite } \tag{37}
\end{equation*}
$$

where we denote $(A \otimes B) \equiv \bar{u}_{3} A u_{1} \bar{u}_{4} B u_{2}$. The other two diagrams are

$$
\begin{align*}
\text { diagram b } & =2 \times i G_{v} \mu^{2 \varepsilon}\left(-i y_{\phi} \mu^{\varepsilon}\right)^{2} \int \frac{d^{d} k}{(2 \pi)^{d}} \gamma_{\mu} \frac{i}{k} \otimes \gamma^{\mu} \frac{i}{-\nless} \frac{i}{k^{2}-m^{2}} \\
& =2 G_{V} \mu^{2 \varepsilon} y_{\phi}^{2}\left(\gamma_{\mu} \gamma_{\alpha} \otimes \gamma^{\mu} \gamma^{\beta}\right) \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\alpha} k_{\beta}}{\left(k^{2}\right)^{2}\left(k^{2}-m^{2}\right)} \\
& =+2 i G_{V} \mu^{2 \varepsilon} y_{\phi}^{2}\left(\gamma_{\mu} \gamma_{\alpha} \otimes \gamma^{\mu} \gamma^{\alpha}\right) \frac{1}{4} \frac{1}{(4 \pi)^{2}} \frac{1}{\varepsilon}+\text { finite } \tag{38}\\
\text { diagram } \mathrm{c} & =-2 i G_{V} \mu^{2 \varepsilon} y_{\phi}^{2}\left(\gamma_{\alpha} \gamma_{\mu} \otimes \gamma^{\mu} \gamma^{\alpha}\right) \frac{1}{4} \frac{1}{(4 \pi)^{2}} \frac{1}{\varepsilon}+\text { finite } \tag{39}
\end{align*}
$$

RG running at one loop - Example 2

It is nice that they sum to a tensor form:

$$
\begin{equation*}
\left(\gamma_{\mu} \gamma_{\alpha} \otimes \gamma^{\mu} \gamma^{\alpha}\right)-\left(\gamma_{\alpha} \gamma_{\mu} \otimes \gamma^{\mu} \gamma^{\alpha}\right)=-i 2\left(\sigma_{\mu \nu} \otimes \gamma^{\mu} \gamma^{v}\right)=-2\left(\sigma_{\mu \nu} \otimes \sigma^{\mu v}\right) \tag{40}
\end{equation*}
$$

In summary,
diagrams with $C_{V} \mathscr{O}_{V}$ inserted

$$
\begin{equation*}
=i G_{V} \mu^{2 \varepsilon} y_{\phi}^{2}\left(\left(\gamma_{\mu} \otimes \gamma^{\mu}\right)-\left(\sigma_{\mu \nu} \otimes \sigma^{\mu \nu}\right)\right) \frac{1}{(4 \pi)^{2}} \frac{1}{\varepsilon}+\text { finite } \tag{41}
\end{equation*}
$$

Note that mixing of operators takes place.
With an insertion of $G_{T} \mathscr{O}_{T}$, the diagrams are similar:

RG running at one loop - Example 2

But the algebra is more complicated. The diagrams yield

$$
\begin{align*}
a & =2 i G_{T} \mu^{2 \varepsilon} y_{\phi}^{2}(-i)^{2} i^{3} \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{k^{2}-m^{2}} \frac{1}{\not k} \sigma^{\mu v} \frac{1}{\not k} \otimes \sigma_{\mu v}=0, \tag{42}\\
b & =2 i G_{T} \mu^{2 \varepsilon} y_{\phi}^{2}(-i)^{2} i^{3} \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{k^{2}-m^{2}} \sigma^{\mu v} \frac{1}{\not k} \otimes \sigma_{\mu v} \frac{1}{-\not k} \\
& =+2 G_{T} \mu^{2 \varepsilon} y_{\phi}^{2} \sigma^{\mu v} \gamma^{\alpha} \otimes \sigma_{\mu v} \gamma_{\alpha} \frac{i}{(4 \pi)^{2}} \frac{1}{4} \frac{1}{\varepsilon}+\text { finite, } \tag{43}\\
c & =2 i G_{T} \mu^{2 \varepsilon} y_{\phi}^{2}(-i)^{2} i^{3} \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{k^{2}-m^{2}} \frac{1}{\not K} \sigma^{\mu v} \otimes \sigma_{\mu v} \frac{1}{\not k} \\
& =-2 G_{T} \mu^{2 \varepsilon} y_{\phi}^{2} \gamma^{\alpha} \sigma^{\mu v} \otimes \sigma_{\mu \nu} \gamma_{\alpha} \frac{i}{(4 \pi)^{2}} \frac{1}{4} \frac{1}{\varepsilon}+\text { finite } \tag{44}
\end{align*}
$$

The sum of the γ matrices is, $\left[\sigma^{\mu v}, \gamma^{\alpha}\right] \otimes \sigma_{\mu \nu} \gamma_{\alpha}$.

RG running at one loop - Example 2

Using the relations

$$
\begin{align*}
& \gamma_{\mu} \gamma_{\nu} \gamma_{\alpha}=g_{\mu v} \gamma_{\alpha}+g_{v \alpha} \gamma_{\mu}-g_{\mu \alpha} \gamma_{v}-i \varepsilon_{\mu v \alpha \beta} \gamma_{5} \gamma^{\beta} \tag{45}\\
& \gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}, \varepsilon^{0123}=-\varepsilon_{0123}=+1
\end{align*}
$$

we compute as follows

$$
\begin{align*}
\sigma_{\mu v} \gamma_{\alpha} & =i\left(+g_{v \alpha} \gamma_{\mu}-g_{\mu \alpha} \gamma_{v}-i \varepsilon_{\mu v \alpha \beta} \gamma_{5} \gamma^{\beta}\right) \tag{46}\\
\gamma_{\alpha} \sigma_{\mu v} & =i\left(-g_{v \alpha} \gamma_{\mu}+g_{\mu \alpha} \gamma_{v}-i \varepsilon_{\mu v \alpha \beta} \gamma_{5} \gamma^{\beta}\right) \tag{47}\\
{\left[\sigma_{\mu v}, \gamma_{\alpha}\right] } & =i 2\left(g_{v \alpha} \gamma_{\mu}-g_{\mu \alpha} \gamma_{v}\right) \tag{48}\\
{\left[\sigma_{\mu v}, \gamma_{\alpha}\right] \otimes \sigma^{\mu v} \gamma^{\alpha} } & =i 2\left(g_{v \alpha} \gamma_{\mu}-g_{\mu \alpha} \gamma_{v}\right) \otimes i \gamma^{\mu} \gamma^{v} \gamma^{\alpha}=-12 \gamma^{\mu} \otimes \gamma_{\mu} \tag{49}
\end{align*}
$$

In summary,

$$
\begin{equation*}
\text { diagrams with } C_{T} \mathscr{O}_{T} \text { inserted }=i G_{T} \mu^{2 \varepsilon} y_{\phi}^{2}\left(\gamma_{\mu} \otimes \gamma^{\mu}\right) \frac{-6}{(4 \pi)^{2}} \frac{1}{\varepsilon}+\text { finite } \tag{50}
\end{equation*}
$$

RG running at one loop - Example 2

These divergences are cancelled by c.t.:

$$
\begin{align*}
\left(\gamma_{\mu} \otimes \gamma^{\mu}\right) & 0=i\left[Z_{G_{V}} Z_{\psi}^{2}-1\right] G_{V} \mu^{2 \varepsilon}+i G_{V} \mu^{2 \varepsilon} y_{\phi}^{2} \frac{1}{(4 \pi)^{2}} \frac{1}{\varepsilon}+i G_{T} \mu^{2 \varepsilon} y_{\phi}^{2} \frac{-6}{(4 \pi)^{2}} \frac{1}{\varepsilon} \\
\left(\sigma_{\mu \nu} \otimes \sigma^{\mu v}\right) & 0=i\left[Z_{G_{T}} Z_{\psi}^{2}-1\right] G_{T} \mu^{2 \varepsilon}+i G_{V} \mu^{2 \varepsilon} y_{\phi}^{2} \frac{-1}{(4 \pi)^{2}} \frac{1}{\varepsilon} \\
\Rightarrow \quad & \left\{\begin{array}{l}
\left(Z_{G_{V}} Z_{\psi}^{2}-1\right) G_{V}=\frac{y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon}\left(-G_{V}+6 G_{T}\right) \\
\left(Z_{G_{T}} z_{\psi}^{2}-1\right) G_{T}=\frac{y_{\phi}^{2}}{(4 \pi)^{2}} \frac{1}{\varepsilon} G_{V}
\end{array}\right. \tag{51}
\end{align*}
$$

Using eq.(12) for $\beta_{G_{S}}$ that also applies here and eq.(14), the above gives

$$
\begin{equation*}
\beta_{G_{V}}=\frac{y_{\phi}^{2}}{(4 \pi)^{2}} 12 G_{T}, \beta_{G_{T}}=\frac{y_{\phi}^{2}}{(4 \pi)^{2}} 2\left(G_{V}+G_{T}\right) \tag{52}
\end{equation*}
$$

RG running at one loop - Example 2

In terms of matrix notation, RGEs become

$$
\mu \frac{d}{d \mu}\binom{G_{V}}{G_{T}}=\frac{2 y_{\phi}^{2}}{(4 \pi)^{2}}\left(\begin{array}{ll}
0 & 6 \tag{53}\\
1 & 1
\end{array}\right)\binom{G_{V}}{G_{T}}
$$

The matrix on rhs can be diagonalized by a similarity transformation to the eigenvalues and eigenvectors:

$$
\begin{align*}
& G_{1}=\frac{1}{\sqrt{10}}\left(G_{V}+3 G_{T}\right), G_{2}=\frac{1}{\sqrt{5}}\left(G_{V}-2 G_{T}\right) \tag{54}\\
& \mu \frac{d G_{1}}{d \mu}=y_{\phi}^{2} a_{1} G_{1}, a_{1}=\frac{6}{(4 \pi)^{2}} \tag{55}\\
& \mu \frac{d G_{2}}{d \mu}=y_{\phi}^{2} a_{2} G_{2}, a_{2}=-\frac{4}{(4 \pi)^{2}} \tag{56}
\end{align*}
$$

RG running at one loop - Example 2

Including RG running of y_{ϕ} in eq.(26), the leading log can be summed as using eq.(28):

$$
\begin{equation*}
\frac{G_{1}(\mu)}{G_{1}\left(\mu_{0}\right)}=R^{3 / 5}, \frac{G_{2}(\mu)}{G_{2}\left(\mu_{0}\right)}=R^{-2 / 5}, R=\frac{y_{\phi}^{2}(\mu)}{y_{\phi}^{2}\left(\mu_{0}\right)} \tag{57}
\end{equation*}
$$

which translate into the running of the original couplings:

$$
\begin{align*}
& G_{V}(\mu)=\frac{1}{5}\left[\left(2 R^{3 / 5}+3 R^{-2 / 5}\right) G_{V}\left(\mu_{0}\right)+6\left(R^{3 / 5}-R^{-2 / 5}\right) G_{T}\left(\mu_{0}\right)\right] \tag{58}\\
& G_{T}(\mu)=\frac{1}{5}\left[\left(3 R^{3 / 5}+2 R^{-2 / 5}\right) G_{T}\left(\mu_{0}\right)+\left(R^{3 / 5}-R^{-2 / 5}\right) G_{V}\left(\mu_{0}\right)\right] \tag{59}
\end{align*}
$$

Conclusion: so long as y_{ϕ} runs, a nonzero G_{V} can always develop from a nonzero G_{T}.

Matching calculation at one loop

We said earlier that matching and RG running can be done independently to various orders in perturbation theory.
Matching: find out new terms in \mathscr{L}_{2} for EFT_{2} (IR theory) that account for effects on light fields of a heavy field that appears in \mathscr{L}_{1} for EFT_{1} (UV theory) but has been integrated out in \mathscr{L}_{2} for EFT_{2}.

Continue with our example:
Example 1: heavy scalar

$$
\begin{align*}
\mathscr{L}_{1}(\Phi, \phi, \psi)= & {[i \bar{\psi} \not \partial \psi-\kappa \bar{\psi} \psi+\cdots]+\left[\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \Phi\right)-\frac{1}{2} M^{2} \phi^{2}+\cdots\right] } \\
& -y_{\phi} \bar{\psi} \psi \Phi+\cdots \tag{60}
\end{align*}
$$

Light fields: ψ of mass κ, ϕ of mass m.
Heavy field: Φ of mass $M \gg m, \kappa$

Matching calculation at one loop - Example 1

We want to increase accuracy in $\psi \psi \rightarrow \psi \psi$ scattering amplitude.
This is accomplished by improvement in RGE and matching calc.
For matching at one loop, this requires to improve bilinear and quartic terms in ψ :

$$
\begin{equation*}
\mathscr{L}_{2}(\phi, \psi)=i z_{\psi} \bar{\psi} \not \partial \psi-\kappa \bar{\psi} \psi+\frac{1}{2} G_{S} \bar{\psi} \psi \bar{\psi} \psi+\cdots \tag{61}
\end{equation*}
$$

Our notations are a bit messy: we sometimes write explicitly renormalization constants or c.t. but sometimes not.

Matching calculation at one loop - Example 1

How to do matching at one loop?
■ Choose a one-particle-irreducible function of light fields that helps to determine terms in \mathscr{L}_{2}.

■ Compute the function at one loop in EFT involving a heavy field ϕ of mass M, and fix all relevant c.t. using mass-independent scheme. We get answer A_{1}.

- Compute the function at one loop in EFT 2 involving an effective interaction that arises from integrating out Φ, and fix all relevant c.t. using the same scheme. We get answer A_{2}

■ Take the difference $A_{1}-A_{2}$ and set the scale $\mu=M$, and put the answer back into \mathscr{L}_{2}.

Matching calculation at one loop - Example 1

How to do matching at one loop?
■ Choose a one-particle-irreducible function of light fields that helps to determine terms in \mathscr{L}_{2}.

- Compute the function at one loop in EFT_{1} involving a heavy field Φ of mass M, and fix all relevant c.t. using mass-independent scheme. We get answer A_{1}.

■ Compute the function at one loop in EFT 2 involving an effective interaction that arises from integrating out Φ, and fix all relevant c.t. using the same scheme. We get answer A_{2}

■ Take the difference $A_{1}-A_{2}$ and set the scale $\mu=M$, and put the answer back into

Matching calculation at one loop - Example 1

How to do matching at one loop?
■ Choose a one-particle-irreducible function of light fields that helps to determine terms in \mathscr{L}_{2}.
■ Compute the function at one loop in EFT_{1} involving a heavy field Φ of mass M, and fix all relevant c.t. using mass-independent scheme. We get answer A_{1}.

■ Compute the function at one loop in EFT_{2} involving an effective interaction that arises from integrating out Φ, and fix all relevant c.t. using the same scheme. We get answer A_{2}.

■ Take the difference $A_{1}-A_{2}$ and set the scale $\mu=M$, and put the answer back into \mathscr{L}_{2}

Matching calculation at one loop - Example 1

How to do matching at one loop?
■ Choose a one-particle-irreducible function of light fields that helps to determine terms in \mathscr{L}_{2}.

■ Compute the function at one loop in EFT_{1} involving a heavy field Φ of mass M, and fix all relevant c.t. using mass-independent scheme. We get answer A_{1}.

■ Compute the function at one loop in EFT_{2} involving an effective interaction that arises from integrating out Φ, and fix all relevant c.t. using the same scheme. We get answer A_{2}.

- Take the difference $A_{1}-A_{2}$ and set the scale $\mu=M$, and put the answer back into \mathscr{L}_{2}.

Matching calculation at one loop - Example 1

■ For example, to compute the scattering amplitude $\psi \psi \rightarrow \psi \psi$ at one loop in EFT_{2}, we have to do matching in both z_{ϕ}, which affects normalization, and G_{S}, which contributes to the part of the amplitude due to integrated out Φ.

- Matching calculation of z_{0}.

In $E F T_{1}$ the self-energy diagram of ψ due to Yukawa coupling with ϕ gives

(Feynman diagram on page 10)

Matching calculation at one loop - Example 1

■ For example, to compute the scattering amplitude $\psi \psi \rightarrow \psi \psi$ at one loop in EFT_{2}, we have to do matching in both z_{ϕ}, which affects normalization, and G_{S}, which contributes to the part of the amplitude due to integrated out Φ.
\square Matching calculation of z_{ϕ}. In EFT_{1} the self-energy diagram of ψ due to Yukawa coupling with ϕ gives

$$
\begin{aligned}
& \left(-i y_{\phi}\right)^{2} \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{i}{k+\phi-\kappa-\kappa} \frac{i}{k^{2}-M^{2}} \\
= & y_{\Phi}^{2} \int d x \mu^{2 \varepsilon} \int \frac{d^{d} \ell}{(2 \pi)^{d}} \frac{x \not p+\kappa}{\left[\ell^{2}-\Delta+i 0^{+}\right]^{2}}, \Delta=(1-x) \kappa^{2}+x M^{2}
\end{aligned}
$$

(Feynman diagram on page 10)

Matching calculation at one loop - Example 1

- We want the part $\propto \phi$ whose coefficient is

$$
\frac{i y_{\Phi}^{2}}{(4 \pi)^{2}} \int d x \times\left[\frac{1}{\bar{\varepsilon}}+\ln \frac{\mu^{2}}{\Delta-i 0^{+}}\right], \frac{1}{\bar{\varepsilon}}=\frac{1}{\varepsilon}-\gamma_{E}+\ln (4 \pi)
$$

■ In modified minimal subtraction ($\overline{\mathrm{MS}}$), we cancel the $1 / \bar{\varepsilon}$ term by c.t. $\left(Z_{\psi}-1\right) i p$, leaving with us the finite piece:

which can be expanded systematically in the small parameter δ :

Exercise - derive the above expansion.

Matching calculation at one loop - Example 1

■ We want the part $\propto \phi$ whose coefficient is

$$
\frac{i y_{\Phi}^{2}}{(4 \pi)^{2}} \int d x x\left[\frac{1}{\bar{\varepsilon}}+\ln \frac{\mu^{2}}{\Delta-i 0^{+}}\right], \frac{1}{\bar{\varepsilon}}=\frac{1}{\varepsilon}-\gamma_{E}+\ln (4 \pi)
$$

■ In modified minimal subtraction ($\overline{\mathrm{MS}}$), we cancel the $1 / \bar{\varepsilon}$ term by c.t. $\left(Z_{\psi}-1\right)$ ip, leaving with us the finite piece:

$$
\frac{i y_{\phi}^{2}}{(4 \pi)^{2}}\left[\frac{1}{2} \ln \frac{\mu^{2}}{M^{2}}-\int d x x \ln (x+(1-x) \delta)\right], \delta=\frac{\kappa^{2}}{M^{2}}
$$

which can be expanded systematically in the small parameter δ :

$$
\frac{i y_{\phi}^{2}}{(4 \pi)^{2}}\left[\frac{1}{2} \ln \frac{\mu^{2}}{M^{2}}+\frac{1}{4}-\frac{1}{4} \delta^{2}(2 \ln \delta+1)+\cdots\right]
$$

Exercise - derive the above expansion.

Matching calculation at one loop - Example 1

■ In $E F T_{2}$ the one loop formed by G_{S} coupling does not contribute a ϕ term to the self-energy of ψ.
■ This difference between $E F T_{1}$ and $E F T_{2}$ is then amended by attaching to a term:
where at $\mu=M$

Matching calculation at one loop - Example 1

- In $E F T_{2}$ the one loop formed by G_{s} coupling does not contribute a ϕ term to the self-energy of ψ.
■ This difference between EFT_{1} and EFT_{2} is then amended by attaching to \mathscr{L}_{2} a term:

$$
\begin{equation*}
\left(z_{\psi}-1\right) i \bar{\psi} \phi \psi \tag{62}
\end{equation*}
$$

where at $\mu=M$

$$
\begin{equation*}
z_{\psi}(M)-1=\frac{y_{\Phi}^{2}}{(4 \pi)^{2}} \frac{1}{4}[1+\cdots] . \tag{63}
\end{equation*}
$$

Matching calculation at one loop - Example 1

Matching calculation of G_{S}.
■ In EFT_{1} compute 1-loop contri. to $\psi \psi \rightarrow \psi \psi$ due to Yukawa coupling of Φ.
■ Again, for matching, not necessary to include crossing diag in both EFTs.

Focus on momentum-indept terms. But we keep a mass κ for ψ to avoid IR divergence. The first two diagrams are finite:
diagram a

diagram b

Matching calculation at one loop - Example 1

Matching calculation of G_{S}.
■ In EFT_{1} compute 1-loop contri. to $\psi \psi \rightarrow \psi \psi$ due to Yukawa coupling of Φ.

- Again, for matching, not necessary to include crossing diag in both EFTs.

Focus on momentum-indept terms. But we keep a mass κ for ψ to avoid IR divergence. The first two diagrams are finite:

$$
\begin{align*}
& \text { diagram a }=\left(-i y_{\Phi} \mu^{\varepsilon}\right)^{4} \int \frac{d^{d} k}{(2 \pi)^{d}} \bar{u}_{3} \frac{i}{k-\kappa} u_{1} \bar{u}_{4} \frac{i}{-\not K-\kappa} u_{2}\left[\frac{i}{k^{2}-M^{2}}\right]^{2} \tag{64}\\
& \text { diagram b }=\left(-i y_{\Phi} \mu^{\varepsilon}\right)^{4} \int \frac{d^{d} k}{(2 \pi)^{d}} \bar{u}_{3} \frac{i}{k-\kappa} u_{1} \bar{u}_{4} \frac{i}{+\not k-\kappa} u_{2}\left[\frac{i}{k^{2}-M^{2}}\right]^{2} \tag{65}
\end{align*}
$$

Matching calculation at one loop - Example 1

■ Their sum is simpler:

$$
\begin{align*}
\text { diagrams (ab) } & =y_{\Phi}^{4} \mu^{2 \varepsilon} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\bar{u}_{3}(k+\kappa) u_{1} \bar{u}_{4}(2 \kappa) u_{2}}{\left(k^{2}-\kappa^{2}\right)^{2}\left[k^{2}-M^{2}\right]^{2}} \\
& =y_{\Phi}^{4} \mu^{2 \varepsilon} 2 \kappa^{2} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\left(k^{2}-\kappa^{2}\right)^{2}\left[k^{2}-M^{2}\right]^{2}} \tag{66}
\end{align*}
$$

where we reserve $\mu^{2 \varepsilon}$ associated with G_{S}.

- Compute the loop integral:

Matching calculation at one loop - Example 1

■ Their sum is simpler:

$$
\begin{align*}
\text { diagrams (ab) } & =y_{\Phi}^{4} \mu^{2 \varepsilon} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\bar{u}_{3}(k+\kappa) u_{1} \bar{u}_{4}(2 \kappa) u_{2}}{\left(k^{2}-\kappa^{2}\right)^{2}\left[k^{2}-M^{2}\right]^{2}} \\
& =y_{\Phi}^{4} \mu^{2 \varepsilon} 2 \kappa^{2} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\left(k^{2}-\kappa^{2}\right)^{2}\left[k^{2}-M^{2}\right]^{2}} \tag{66}
\end{align*}
$$

where we reserve $\mu^{2 \varepsilon}$ associated with G_{S}.

- Compute the loop integral:

$$
\begin{align*}
& \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\left(k^{2}-\kappa^{2}\right)^{2}\left[k^{2}-M^{2}\right]^{2}} \\
= & \int_{0}^{1} d x 6 x(1-x) \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\left[k^{2}-\Delta+i 0^{+}\right]^{4}} \quad \delta=\frac{\kappa^{2}}{M^{2}} \\
= & \frac{i}{(4 \pi)^{2}} \int_{0}^{1} d x \frac{x(1-x)}{\Delta^{2}}=\frac{i}{(4 \pi)^{2}} \frac{1}{M^{4}} \int_{0}^{1} d x \frac{x(1-x)}{[x+(1-x) \delta]^{2}}, \tag{67}
\end{align*}
$$

Matching calculation at one loop - Example 1

- We want to expand in small δ.

It is not possible to expand the integrand directly.
You may appeal to Mathematica etc. But sometimes you have to do it yourself when softwares cannot do it well.
■ There is a systematical way to do so here by first finishing integration with fractioning,

and then expanding in δ

Matching calculation at one loop - Example 1

- We want to expand in small δ.

It is not possible to expand the integrand directly.
You may appeal to Mathematica etc. But sometimes you have to do it yourself when softwares cannot do it well.

- There is a systematical way to do so here by first finishing integration with fractioning,

$$
\begin{aligned}
& \frac{x(1-x)}{(x+a)^{2}}=\frac{-(x+a)^{2}+(1+2 a)(x+a)-a(1+a)}{(x+a)^{2}}, a=\frac{\delta}{1-\delta} \\
& \int_{0}^{1} d x \frac{x(1-x)}{[x+(1-x) \delta]^{2}}=\frac{1}{(1-\delta)^{2}}\left[-1+(1+2 a) \ln \frac{1+a}{a}-a(1+a)\left(\frac{1}{a}-\frac{1}{1+a}\right)\right]
\end{aligned}
$$

and then expanding in δ.

Matching calculation at one loop - Example 1

■ In summary, the first terms are

$$
\begin{equation*}
\operatorname{diag}(\mathrm{ab})=\frac{i y_{\Phi}^{4}}{(4 \pi)^{2}} \frac{2 \kappa^{2}}{M^{4}} \mu^{2 \varepsilon} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2}[(-2-\ln \delta)+(-4-4 \ln \delta) \delta+\cdots] \tag{68}
\end{equation*}
$$

■ To compute diagram c, compute first self-energy of ϕ due to ψ loop:

Matching calculation at one loop - Example 1

■ In summary, the first terms are

$$
\begin{equation*}
\operatorname{diag}(\mathrm{ab})=\frac{i y_{\Phi}^{4}}{(4 \pi)^{2}} \frac{2 \kappa^{2}}{M^{4}} \mu^{2 \varepsilon} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2}[(-2-\ln \delta)+(-4-4 \ln \delta) \delta+\cdots] \tag{68}
\end{equation*}
$$

■ To compute diagram c, compute first self-energy of Φ due to ψ loop:

$$
\begin{align*}
& i \Sigma_{\Phi}\left(p^{2}\right) \\
= & -\left(-i y_{\Phi} \mu^{\varepsilon}\right)^{2} \int \frac{d^{d} k}{(2 \pi)^{d}} \operatorname{tr} \frac{i}{k-\kappa} \frac{i}{k+\not p-\kappa} \\
= & -\frac{i y_{\Phi}^{2}}{(4 \pi)^{2}} 12 \int_{0}^{1}\left[\kappa^{2}-x(1-x) p^{2}\right]\left[\frac{1}{\bar{\varepsilon}}+\frac{1}{3}+\ln \frac{\mu^{2}}{\kappa^{2}-x(1-x) p^{2}}\right] \\
= & -\frac{i y_{\Phi}^{2}}{(4 \pi)^{2}}\left\{2\left[6 \kappa^{2}-p^{2}\right] \frac{1}{\bar{\varepsilon}}+12 \int_{0}^{1}\left[\kappa^{2}-x(1-x) p^{2}\right]\left[\frac{1}{3}+\ln \frac{\mu^{2}}{\kappa^{2}-x(1-x) p^{2}}\right]\right\} \tag{69}
\end{align*}
$$

Matching calculation at one loop - Example 1

■ The $1 / \bar{\varepsilon}$ term is cancelled by c.t., so that as $p^{2} \rightarrow 0$ we have

$$
\begin{equation*}
i\left[\Sigma_{\Phi}\left(p^{2}\right)+\text { c.t. }\right]_{p^{2}=0}=-\frac{i y_{\Phi}^{2}}{(4 \pi)^{2}} 4 \kappa^{2}\left[1+3 \ln \frac{\mu^{2}}{\kappa^{2}}\right] \tag{70}
\end{equation*}
$$

Caution: likely illegitimate to drop p^{2} with respect to κ^{2}.

$$
\begin{align*}
\operatorname{diag} c \text { and c.t. } & =\left(-i y_{\phi} \mu^{\varepsilon}\right)^{2} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2}\left(\frac{i}{-M^{2}}\right)^{2} i\left[\Sigma_{\phi}\left(p^{2}\right)+\text { c.t. }\right]_{p^{2}=0} \\
& =-\frac{i y_{\phi}^{4}}{(4 \pi)^{2}} \frac{4 \kappa^{2}}{M^{4}} \mu^{2 \varepsilon} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2}\left[1+3 \ln \frac{\mu^{2}}{\kappa^{2}}\right] \tag{71}
\end{align*}
$$

Matching calculation at one loop - Example 1

■ To compute diag d, compute first 1-loop $\Phi \bar{\psi} \psi$ vertex due to Φ Yukawa coupling.

- UV div is independent of external momenta, but again the dropped p^{2} term is of the same order as the kept κ^{2} term.

Matching calculation at one loop - Example 1

■ To compute diag d, compute first 1-loop $\Phi \bar{\psi} \psi$ vertex due to Φ Yukawa coupling.
■ UV div is independent of external momenta, but again the dropped p^{2} term is of the same order as the kept κ^{2} term.

$$
\begin{align*}
-i y_{\Phi} \mu^{\varepsilon} V_{\Phi \bar{\psi} \psi}(0,0) & =\left(-i y_{\Phi} \mu^{\varepsilon}\right)^{3} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{i}{k-\kappa} \frac{i}{k-\kappa} \frac{i}{k^{2}-M^{2}} \\
& =y_{\Phi}^{3} \mu^{3 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{2}+\kappa^{2}}{\left[k^{2}-\kappa^{2}\right]^{2}\left[k^{2}-M^{2}\right]} \\
& =y_{\Phi}^{3} \mu^{\varepsilon} \frac{i}{(4 \pi)^{2}} \int d x\left[\frac{1}{\bar{\varepsilon}}+\ln \frac{\mu^{2}}{\Delta}-\frac{2(1-x) \kappa^{2}}{\Delta}\right] \tag{72}
\end{align*}
$$

Matching calculation at one loop - Example 1

■ The $1 / \bar{\varepsilon}$ term is removed by c.t. for the vertex, so that

$$
\begin{align*}
& -i y_{\phi} \mu^{\varepsilon} V_{\Phi \bar{\Psi} \psi}(0,0)+\text { c.t. } \quad \delta=\frac{\kappa^{2}}{M^{2}} \\
= & i y_{\phi} \mu^{\varepsilon} \frac{y_{\phi}^{2}}{(4 \pi)^{2}} \int d x\left[\ln \frac{\mu^{2}}{M^{2}}-\ln [x+(1-x) \delta]-\delta \frac{2(1-x)}{x+(1-x) \delta}\right] \\
= & i y_{\phi} \mu^{\varepsilon} \frac{y_{\phi}^{2}}{(4 \pi)^{2}}\left[\ln \frac{\mu^{2}}{M^{2}}+1+(2+3 \ln \delta) \delta+\cdots\right] \tag{73}
\end{align*}
$$

Including a factor of 2 , we have
diag d and c.t.

$$
\begin{align*}
& =2 \times\left(-i y_{\Phi} \mu^{\varepsilon}\right) \frac{i}{-M^{2}} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2}\left[-i y_{\Phi} \mu^{\varepsilon} V_{\Phi \bar{\psi} \psi}(0,0)+\text { c.t. }\right] \\
& =-\frac{i y_{\Phi}^{4}}{(4 \pi)^{2}} \mu^{2 \varepsilon} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2} \frac{2}{M^{2}}\left[\ln \frac{\mu^{2}}{M^{2}}+1+\frac{\kappa^{2}}{M^{2}}\left(2+3 \ln \frac{\kappa^{2}}{M^{2}}\right)+\cdots\right] \tag{74}
\end{align*}
$$

Matching calculation at one loop - Example 1

In summary, the leading one-loop renormalized contribution to $\psi \psi \rightarrow \psi \psi$ in EFT_{1} is
renor. one-loop EFT_{1} diag. for $\psi \psi \rightarrow \psi \psi$ due to Φ exchange

$$
\begin{equation*}
=\frac{i 2 y_{\Phi}^{4}}{(4 \pi)^{2} M^{2}} \mu^{2 \varepsilon} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2}\left\{-1-\ln \frac{\mu^{2}}{M^{2}}+\delta\left(-6-6 \ln \frac{\mu^{2}}{M^{2}}+2 \ln \delta\right)+\cdots\right\} \tag{75}
\end{equation*}
$$

where it is actually unclear if the $O(\delta)$ terms are complete.

Matching calculation at one loop - Example 1

■ In EFT_{2} compute the one-loop contribution to $\psi \psi \rightarrow \psi \psi$ due to effective G_{S} coupling.

b

■ All diagrams are now UV divergent.
diagram a
$\left(i G_{S} \mu^{2 \varepsilon}\right)^{2} \int \frac{d^{d} k}{(2 \pi)^{d}} \bar{u}_{3} \frac{i}{k-\kappa} u_{1} \bar{u}_{4} \frac{i}{-k-\kappa} u_{2}$
diagram b

Matching calculation at one loop - Example 1

■ In EFT_{2} compute the one-loop contribution to $\psi \psi \rightarrow \psi \psi$ due to effective G_{S} coupling.

a

b

■ All diagrams are now UV divergent.

$$
\begin{align*}
& \text { diagram a }=\left(i G_{S} \mu^{2 \varepsilon}\right)^{2} \int \frac{d^{d} k}{(2 \pi)^{d}} \bar{u}_{3} \frac{i}{k-\kappa} u_{1} \bar{u}_{4} \frac{i}{-\not k-\kappa} u_{2} \tag{76}\\
& \text { diagram b }=\left(i G_{S} \mu^{2 \varepsilon}\right)^{2} \int \frac{d^{d} k}{(2 \pi)^{d}} \bar{u}_{3} \frac{i}{k-\kappa} u_{1} \bar{u}_{4} \frac{i}{+\not K-\kappa} u_{2} \tag{77}
\end{align*}
$$

Matching calculation at one loop - Example 1

- Their sum is

$$
\begin{align*}
\text { diagrams (ab) } & =G_{S}^{2} \mu^{2 \varepsilon} \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\bar{u}_{3}(k+\kappa) u_{1} \bar{u}_{4} 2 \kappa u_{2}}{\left[k^{2}-\kappa^{2}\right]^{2}} \\
& =G_{S}^{2} \mu^{2 \varepsilon} \frac{i}{(4 \pi)^{2}} 2 \kappa^{2} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2}\left[\frac{1}{\bar{\varepsilon}}+\ln \frac{\mu^{2}}{\kappa^{2}}\right] \tag{78}
\end{align*}
$$

■ Diagram c is identical in two EFTs in our approximation.
diagram d
$2 \times\left(i G_{S} \mu^{2 \varepsilon}\right)^{2} \int \frac{d^{d} k}{(2 \pi)^{d}} \bar{u}_{3} \frac{i}{k-\kappa} \frac{i}{k-\kappa} u_{1} \bar{u}_{4} u_{2}$
$G_{S}^{2} \mu^{2 \varepsilon} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2} \frac{i}{(4 \pi)^{2}} 2 \kappa^{2}\left[\frac{3}{\bar{\varepsilon}}+3 \ln \frac{\mu^{2}}{\kappa^{2}}+1\right]$
■ Absorbing the $1 / \bar{\varepsilon}$ terms by c.t. for G_{S} coupling in \mathscr{L}_{2}, we are left with renormalized 1-loop EFT_{2} diagrams for $\psi \psi \rightarrow \psi \psi$ due to G_{S} coupling
\square

Matching calculation at one loop - Example 1

- Their sum is

$$
\begin{align*}
\text { diagrams (ab) } & =G_{S}^{2} \mu^{2 \varepsilon} \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\bar{u}_{3}(k+\kappa) u_{1} \bar{u}_{4} 2 \kappa u_{2}}{\left[k^{2}-\kappa^{2}\right]^{2}} \\
& =G_{S}^{2} \mu^{2 \varepsilon} \frac{i}{(4 \pi)^{2}} 2 \kappa^{2} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2}\left[\frac{1}{\bar{\varepsilon}}+\ln \frac{\mu^{2}}{\kappa^{2}}\right] \tag{78}
\end{align*}
$$

■ Diagram c is identical in two EFTs in our approximation.

$$
\begin{align*}
\text { diagram d } & =2 \times\left(i G_{S} \mu^{2 \varepsilon}\right)^{2} \int \frac{d^{d} k}{(2 \pi)^{d}} \bar{u}_{3} \frac{i}{k-\kappa} \frac{i}{k x-\kappa} u_{1} \bar{u}_{4} u_{2} \\
& =G_{S}^{2} \mu^{2 \varepsilon} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2} \frac{i}{(4 \pi)^{2}} 2 \kappa^{2}\left[\frac{3}{\bar{\varepsilon}}+3 \ln \frac{\mu^{2}}{\kappa^{2}}+1\right] \tag{79}
\end{align*}
$$

■ Absorbing the $1 / \bar{\varepsilon}$ terms by c.t. for G_{S} coupling in \mathscr{L}_{2}, we are left with
renormalized 1-loop EFT_{2} diagrams for $\psi \psi \rightarrow \psi \psi$ due to G_{S} coupling

Matching calculation at one loop - Example 1

- Their sum is

$$
\begin{align*}
\text { diagrams (ab) } & =G_{S}^{2} \mu^{2 \varepsilon} \mu^{2 \varepsilon} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\bar{u}_{3}(k+\kappa) u_{1} \bar{u}_{4} 2 \kappa u_{2}}{\left[k^{2}-\kappa^{2}\right]^{2}} \\
& =G_{S}^{2} \mu^{2 \varepsilon} \frac{i}{(4 \pi)^{2}} 2 \kappa^{2} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2}\left[\frac{1}{\bar{\varepsilon}}+\ln \frac{\mu^{2}}{\kappa^{2}}\right] \tag{78}
\end{align*}
$$

■ Diagram c is identical in two EFTs in our approximation.

$$
\begin{align*}
\text { diagram d } & =2 \times\left(i G_{S} \mu^{2 \varepsilon}\right)^{2} \int \frac{d^{d} k}{(2 \pi)^{d}} \bar{u}_{3} \frac{i}{\not k-\kappa} \frac{i}{\not k-\kappa} u_{1} \bar{u}_{4} u_{2} \\
& =G_{S}^{2} \mu^{2 \varepsilon} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2} \frac{i}{(4 \pi)^{2}} 2 \kappa^{2}\left[\frac{3}{\bar{\varepsilon}}+3 \ln \frac{\mu^{2}}{\kappa^{2}}+1\right] \tag{79}
\end{align*}
$$

■ Absorbing the $1 / \bar{\varepsilon}$ terms by c.t. for G_{S} coupling in \mathscr{L}_{2}, we are left with renormalized 1-loop EFT_{2} diagrams for $\psi \psi \rightarrow \psi \psi$ due to G_{S} coupling

$$
\begin{equation*}
=G_{S}^{2} \mu^{2 \varepsilon} \frac{i}{(4 \pi)^{2}} 2 \kappa^{2} \bar{u}_{3} u_{1} \bar{u}_{4} u_{2}\left\{-1-2 \ln \frac{\mu^{2}}{\kappa^{2}}\right\} \tag{80}
\end{equation*}
$$

Matching calculation at one loop - Example 1

- The difference

$$
\mathrm{EFT}_{1}-\mathrm{EFT}_{2}
$$

gives the correction to G_{S} upon using $G_{S}=y_{\Phi}^{2} / M^{2}$:

$$
\begin{equation*}
G_{S}(\mu)=\frac{y_{\phi}^{2}}{M^{2}}-\frac{2 y_{\Phi}^{4}}{(4 \pi)^{2} M^{2}}\left\{1+\ln \frac{\mu^{2}}{M^{2}}+\delta\left(5+4 \ln \frac{\mu^{2}}{M^{2}}\right)\right\} \tag{81}
\end{equation*}
$$

which should be included in \mathscr{L}_{2} as a consequence of matching.

- Comments -
- No In κ^{2} singularity appears in the matching result as expected: IR physics is not changed.

Matching calculation at one loop - Example 1

- The difference

$$
\mathrm{EFT}_{1}-\mathrm{EFT}_{2}
$$

gives the correction to G_{S} upon using $G_{S}=y_{\Phi}^{2} / M^{2}$:

$$
\begin{equation*}
G_{S}(\mu)=\frac{y_{\phi}^{2}}{M^{2}}-\frac{2 y_{\Phi}^{4}}{(4 \pi)^{2} M^{2}}\left\{1+\ln \frac{\mu^{2}}{M^{2}}+\delta\left(5+4 \ln \frac{\mu^{2}}{M^{2}}\right)\right\} \tag{81}
\end{equation*}
$$

which should be included in \mathscr{L}_{2} as a consequence of matching.

- Comments -
- No $\ln \kappa^{2}$ singularity appears in the matching result as expected: IR physics is not changed.
- To avoid large log, we should set $\mu=M$ in matching.
- Large logs will be summed to all orders by RGE in EFT 2 .

Matching calculation at one loop - Example 1

■ The difference

$$
\mathrm{EFT}_{1}-\mathrm{EFT}_{2}
$$

gives the correction to G_{S} upon using $G_{S}=y_{\Phi}^{2} / M^{2}$:

$$
\begin{equation*}
G_{S}(\mu)=\frac{y_{\phi}^{2}}{M^{2}}-\frac{2 y_{\Phi}^{4}}{(4 \pi)^{2} M^{2}}\left\{1+\ln \frac{\mu^{2}}{M^{2}}+\delta\left(5+4 \ln \frac{\mu^{2}}{M^{2}}\right)\right\} \tag{81}
\end{equation*}
$$

which should be included in \mathscr{L}_{2} as a consequence of matching.

- Comments -
- No $\ln \kappa^{2}$ singularity appears in the matching result as expected: IR physics is not changed.
- To avoid large log, we should set $\mu=M$ in matching.
- Large logs will be summed to all orders by RGE in E_{2}.

Summary on EFT calculations

■ EFT is as good as a renormalizable theory so long as we are content with finite accuracy required by experiments.

■ Our working QFT is a tower of EFTs.
■ In top-down approach:

- From high to low scales, a heavy field is integrated out at the border of two consecutive EFTs

Do matching calculation so that its effects on light fields are correctly reproduced.
Set $\mu=M$, mass of the heavy field, to avoid large log

Summary on EFT calculations

■ EFT is as good as a renormalizable theory so long as we are content with finite accuracy required by experiments.
■ Our working QFT is a tower of EFTs.
■ In top-down approach:

- From high to low scales, a heavy field is integrated out at the border of two consecutive EFTs.
Do matching calculation so that its effects on light fields are correctly reproduced.
Set $\mu=M$, mass of the heavy field, to avoid large log
- Within one EFT, do RG running from $\mu=M$ to m, typical scale of a process under consideration.
$\ln (M / m)$ is summed, improving simple perturbation theory calculations.

Summary on EFT calculations

■ EFT is as good as a renormalizable theory so long as we are content with finite accuracy required by experiments.
■ Our working QFT is a tower of EFTs.

- In top-down approach:
- From high to low scales, a heavy field is integrated out at the border of two consecutive EFTs.
Do matching calculation so that its effects on light fields are correctly reproduced.
Set $\mu=M$, mass of the heavy field, to avoid large log.
- Within one EFT, do RG running from $\mu=M$ to m, typical scale of a process under consideration. $\ln (M / m)$ is summed, improving simple perturbation theory calculations.

Summary on EFT calculations

■ Matching and RG running can be done at various orders as desired.
■ If UV theory is unknown or not solvable, i.e., in bottom-up approach, we write down general EFT and leave its effective couplings as unknowns to be determined from measurements.

- Important ingredients:

Symmetries: spacetime, gauge, global
Power counting: here according to inverse powers of heavy mass, requiring mass-independent schemes

Summary on EFT calculations

■ Matching and RG running can be done at various orders as desired.
■ If UV theory is unknown or not solvable, i.e., in bottom-up approach, we write down general EFT and leave its effective couplings as unknowns to be determined from measurements.

■ Important ingredients:
Symmetries: spacetime, gauge, global
Power counting: here according to inverse powers of heavy mass, requiring mass-independent schemes

Summary on EFT calculations

■ Matching and RG running can be done at various orders as desired.
■ If UV theory is unknown or not solvable, i.e., in bottom-up approach, we write down general EFT and leave its effective couplings as unknowns to be determined from measurements.

- Important ingredients:

Symmetries: spacetime, gauge, global Power counting: here according to inverse powers of heavy mass, requiring mass-independent schemes

