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Lecture 3a: Techniques in EFT

General discussions on calculations in EFT

General discussions on calculations in EFT

� Suppose we are interested in a physical process occurring at a typical
energy scale E ∼ m.

� Suppose we know physics (full theory or EFT) described by L1 for EFT1,
whose heaviest particle Φ has mass M ≫ m and which has no particles
with a mass between m and M.

� We proceed as follows:

� Build EFT2 so that
(1) Φ has been integrated out, i.e., L2 for EFT2 contains no Φ.
(2) Just below scale µ = M EFT2 yields same results as EFT1 for
processes involving only particles lighter than Φ. This is called matching
calculation.
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General discussions on calculations in EFT

=⇒ additional effective interactions C(µ)O(µ) and renormalized
effects in existing terms in L .
Decoupling means that additional interactions are from high-dim
operators O suppressed by M and that renormalization effects have
no large log at µ = M.
(3) Do RG running from scale µ = M to µ = m so that matrix
elements of O(µ) can be directly evaluated at µ = m.
RG effects are incorporated in Wilson coefficients C(µ) of O(µ).

� If in between m and M, there are several other particle masses, we do
EFT step by step from high to low masses.
=⇒ a sequence of EFTs
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General discussions on calculations in EFT

� In principle, the end result is independent of regularization and
renormalization scheme.

� In practice, dimensional regularization plus mass-independent scheme is
easier than Wilson’s cutoff plus mass-dependent subtraction.

� A bit formalism follows.

� Suppose there are a field Φ of heavy mass M and fields φ of lighter mass
in UV theory or EFT1.

� We are interested in low energy physics involving only φ particles
described by EFT2 or IR theory.
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All physical quantities can be obtained from connected Green’s
functions whose generating functional for φ is, in EFT1,

Z [j ] =
∫

DΦDφ exp
[

iS1[Φ,φ ]+ i
∫

jφ
]

, (1)

where S1 is the action for EFT1 and j is the source for φ .

� EFT1 can be a fundamental theory (UV completion) or an EFT.

� From the point of view of EFT, the only difference is:
For the former, S1 contains a finite number of terms which renormalize
among themselves.
For the latter, S1 has an infinite tower of terms, but is also renormalizable
for operators up to any given dimension. This is all right in the sense that
experimental accuracy is finite.
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Now integrate out Φ:

Z [j ] =
∫

Dφ exp
[

iS2[φ ]+ i
∫

jφ
]

(2)

where the ‘action’ for EFT2 S2 is generally nonlocal.
It involves an infinite number of terms when expanded in field
derivatives:

S2[φ ] =
∫

d4x L2(φ ,∂φ ,∂ 2φ , . . . ), (3)

L2(φ ,∂φ ,∂ 2φ , . . . ) = Lni≤4 + ∑
ni≥5

ciOi . (4)

� ni counts the dimension of fields and derivatives, [ci ] = 4−ni and
ci ∼ 1/Mni−4 for ni ≥ 5.

� Given ni , there are a finite number of independent Oi s although the
number increases fast with ni .
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General discussions on calculations in EFT

� Usually all possible Oi s do appear at this order or another in perturbation
theory so long as they are consistent with low energy symmetries.

� For a good EFT it should suffice to work with high-dim operators of the
first few dimensions.

� Caution: Operators of diff. dim may come from diff. heavy physics.

• For instance, in SMEFT, dim-5 and dim-7 operators violate lepton
number while most dim-6 operators do not.

� By definition S2 should reproduce low energy φ physics of S1.
S2 renormalizes (part of) existing terms in S1 and generally introduces
new high-dim operators.

� In practice we usually do the above calc using Feynman diagrams.
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Matching calculation at tree level

First thing first: power counting.

� In strongly coupled theory it can be complicated –
see Manohar-Georgi’s paper in 1980s on naive dimensional analysis.

� In weakly coupled theory this is easy –
free theory dominates and defines the dimension of fields, and
[O] simply counts those of fields and derivatives involved.

� Power counting together with desired accuracy for physical quantities
determines to which dimension we should expand and to which order we
do perturbation.

� We work with natural units, h̄ = c = 1, so that

[mass] = [energy] = [length]−1. (5)

We name dimension with respect to mass.
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Example 1: heavy scalar

Consider a toy model, fundamental or EFT1:

L1(Φ,φ ,ψ) = iψ̄/∂ψ +
1
2
(∂µ φ)(∂ µ φ)− 1

2
m2φ2 −yφ ψ̄ψφ + · · ·

+
1
2
(∂µΦ)(∂ µΦ)− 1

2
M2Φ2 + · · ·

−yΦψ̄ψΦ+ · · · (6)

Light fields: massless ψ , φ of mass m.
Heavy field: Φ of mass M ≫ m

Assume Yukawa couplings small enough to allow for pertur. analysis.

We are interested in EFT2 for light fields φ and ψ alone, i.e., we want
to integrate out Φ.
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Power counting starts with dimensional analysis:

[ψ̄/∂ψ ] = [(∂ µ φ)2] = [(∂ µΦ)2] = 4 ⇒ [ψ ] =
3
2
, [φ ] = [Φ] = 1 (7)

[yφ ψ̄ψφ ] = [yΦψ̄ψΦ] = 4 ⇒ [yφ ] = [yΦ] = 0 (8)

Integrating out Φ will renormalize existing terms for φ , ψ and
generate new high-dim operators involving φ , ψ .

Here we consider new high-dim operators due to Yukawa coupling of
Φ to ψ .

We seek for L2(φ ,ψ) in EFT2 which can reproduce physics of
L1(Φ,φ ,ψ) for ψ , φ below scale M.
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Matching calc at tree level – Example 1: heavy scalar

First few possible high-dim operators include

dim-6 O6 = ψ̄ψψ̄ψ (9)

dim-8 O8 = (∂µ ψ̄∂ µ ψ)ψ̄ψ (10)

We work to tree level. Consider the process

ψ(p1)+ψ(p2)→ ψ(p3)+ψ(p4)

Since we are interested in new effective interactions that are induced
by the heavy field Φ, contributions from pure light fields are irrelevant.

There are two Feynman diagrams:

p1

p2

p3

p4

Φ

p1

p2

p3

p4

Φ
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The amplitude is, from Φ exchange in UV theory (EFT1),

iAUV = ū(p3)(−iyΦ)u(p1)
i

(p1 −p3)2 −M2 ū(p4)(−iyΦ)u(p2)− (3 ↔ 4) (11)

Since ps are much smaller than M, we expand the propagator to,
e.g., O(p2),

1
(p1 −p3)2 −M2 =− 1

M2 − (p1 −p3)
2

M4 +O(M−6) (12)

Thus,

AUV =
y2
Φ

M2

[

ū3u1ū4u2 − (3 ↔ 4)
]

+
y2
Φ

M4

[

(p1 −p3)
2ū3u1ū4u2 − (3 ↔ 4)

]

+O(M−6) (13)
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The first term can be reproduced by an effective interaction ∝ O6 in IR
theory (EFT2):

L2(φ ,ψ) = iψ̄/∂ψ +
1
2
(∂µ φ)(∂ µ φ)− 1

2
m2φ2 −yφ ψ̄ψφ + · · ·

+
1
2

GSO6 + · · · , GS =
y2
Φ

M2
(14)

The second term is a bit complicated.
We want to get an effective interaction that is valid for both on-shell
and off-shell particles.
But to fix its structure we can use any convenient kinematics.
Here we apply on-shell conditions, p2

i = 0 for ψ particle, so that

(p1 −p3)
2 = (p2 −p4)

2 =−2p1 ·p3 =−2p2 ·p4 =−(p1 ·p3 +p2 ·p4)

where symmetrization has been made.
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Matching calc at tree level – Example 1: heavy scalar

Only particles are involved here:
p1,2 incoming: p1,2 ↔ i∂ψ ; p3,4 outgoing: p3,4 ↔−i∂ψ̄ .

Thus, the second term in AUV can be reproduced by an effective
interaction in EFT2:

L2(φ ,ψ) = iψ̄/∂ψ +
1
2
(∂µ φ)(∂ µ φ)− 1

2
m2φ2 −yφ ψ̄ψφ + · · ·

+
1
2

GSO6 +c8O8 · · · , GS =
y2
Φ

M2 , c8 =− y2
Φ

M4 (15)

But dim-8 operators are not unique; there seem to be 6 possible
arrangements of derivatives:

(

(∂ 2ψ̄)ψ
)

ψ̄ψ ,
(

ψ̄(∂ 2ψ)
)

ψ̄ψ ,
(

(∂µ ψ̄)(∂ µ ψ)
)

ψ̄ψ ,
(

(∂µ ψ̄)ψ
)(

(∂ µ ψ̄)ψ
)

,
(

ψ̄(∂µ ψ)
)(

ψ̄(∂ µ ψ)
)

,
(

(∂µ ψ̄)ψ
)(

ψ̄(∂ µ ψ)
)

.
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Matching calc at tree level – Example 1: heavy scalar

� It is important that all operators consistent with symmetry and of same
dimension are included.

� But redundant operators can be removed by

• integration by parts (IBP) ↔ action defined up to surface terms ↔
momentum conservation,

• eqns of motion (EoM) ↔ S matrix not changed by field redefinitions,
• and algebraic relations like Fierz identities associated with

representation of Lorenz group.

� It is a hard job to exhaust all possible and independent operators of a
given dim in a complicated EFT like SMEFT!
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Back to our example:
(

(∂ 2ψ̄)ψ
)

ψ̄ψ ,
(

ψ̄(∂ 2ψ)
)

ψ̄ψ can be dropped on-shell or by EoM.
(

ψ̄(∂µ ψ)
)(

ψ̄(∂ µ ψ)
)

,
(

(∂µ ψ̄)ψ
)(

ψ̄(∂ µ ψ)
)

can be expressed in terms of those
kept, dropped, and IBP:

(

(∂µ ψ̄)ψ
)(

ψ̄(∂ µ ψ)
)

= ∂ µ [((∂µ ψ̄)ψ
)(

ψ̄ψ
)]

−
(

(∂ 2ψ̄)ψ
)(

ψ̄ψ
)

−
(

(∂µ ψ̄)(∂ µ ψ)
)(

ψ̄ψ
)

−
(

(∂µ ψ̄)ψ
)(

(∂ µ ψ̄)ψ
)

,
(

ψ̄(∂µ ψ)
)(

ψ̄(∂ µ ψ)
)

= ∂µ
[(

ψ̄ψ
)(

ψ̄(∂ µ ψ)
)]

−
(

(∂µ ψ̄)ψ
)(

ψ̄(∂ µ ψ)
)

−
(

(∂µ ψ̄)(∂ µ ψ)
)(

ψ̄ψ
)

−
(

ψ̄ψ
)(

ψ̄(∂ 2ψ)
)
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Matching calc at tree level – Example 1: heavy scalar

Operator O1
8 =

(

(∂µ ψ̄)ψ
)(

(∂ µ ψ̄)ψ
)

doesn’t appear in tree-level matching,
but could appear in higher-order matching or
get induced by renormalization from O

2
8 =

(

(∂µ ψ̄)(∂ µ ψ)
)(

ψ̄ψ
)

.

Thus we should write for IR theory below scale M:

L2(φ ,ψ) = iψ̄/∂ψ +
1
2
(∂µ φ)(∂ µ φ)− 1

2
m2φ2 −yφ ψ̄ψφ + · · ·

+
1
2

GSO6 +c1
8O

1
8 +c2

8O
2
8 · · · . (16)
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Matching calc at tree level – Example 2: 4-Fermi int.

Example 2: 4-Fermi weak interactions
Historically Fermi proposed his 4-Fermi effective interaction to
account for nuclear β decays.
In the framework of SM, his interaction is a low energy EFT well
below the weak gauge boson masses mW ,Z .

SM = EFT1 or UV theory bordered at mW ,Z 4-Fermi = EFT2 or IR theory

The relevant terms in SM are

LSM = · · ·+ g2√
2

(

W+
µ J+µ

W +W−
µ J−µ

W

)

+
g2

cosθW
Zµ Jµ

Z + · · · (17)

J+µ
W = ν̄γµ PLe+ ūγµ PLd (18)

J−µ
W = (J+µ

W )†, PL =
1
2
(1− γ5) (19)

Jµ
Z = ∑

f

f̄ γµ
(

T3PL −Q sin2 θW

)

f (20)
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Matching calc at tree level – Example 2: 4-Fermi int.

They yield the amplitudes for a 4-fermion process:

iA W
UV =

ig2√
2

J+µ
W

−i

q2 −m2
W

[gµν + · · · ] ig2√
2

J−ν
W , (21)

iA Z
UV =

ig2

cosθW
Jµ

Z
−i

q2 −m2
Z

[gµν + · · · ] ig2

cosθW
Jν

Z , (22)

Here spinor wavefunctions are used in currents.
· · · stand for quadratic q terms, suppressed at low energies.
Crossing terms are possible for Z -exchange.

For |q2| ≪ m2
W ,Z , their leading terms are

iA W
UV = −i

[

g2√
2mW

]2

J+µ
W J−µ

W , (23)

iA Z
UV = −i

[

g2√
2cosθW mZ

]2

Jµ
Z Jµ

Z (24)
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Matching calc at tree level – Example 2: 4-Fermi int.

In Feynman diagrams,

J−
W J+

W

W+
µ

w

w

�

EFT1 JZ JZ

Zµ

w

w

�

×J−
W J+

W EFT2 ×JZ JZ
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Matching calc at tree level – Example 2: 4-Fermi int.

One process may have both W and Z contributions.
At E ≪ mW ,Z , leading terms are reproduced by effective interactions
in EFT2 where W , Z are integrated out:

L2 = − g2
2

2m2
W

J+µ
W J+

W µ − 1
2

g2
2

m2
Z cos2 θW

Jµ
Z JZ

µ , symmetry factor (25)

where the first term corresponds to 4-Fermi charged-current (CC)
interaction with the identification

g2
2

2m2
W

=
4GF√

2
(26)

and the second term is the SM prediction for neutral-current (NC)
weak interactions.
The equal couplings for CC and NC interactions are a result of
custodial symmetry, m2

W = m2
Z cos2 θW .

SYS Univ, July 24-28, 2017 Page 42



Lecture 3a: Techniques in EFT

Matching calculation at tree level

Matching calc at tree level – Example 3: neutrino
mass operator from type I seesaw

Example 3: Weinberg’s neutrino mass operator from type I seesaw

� Introduce RH fermions NR , completely neutral under SM gauge group
SU(3)C ×SU(2)L ×U(1)Y , hence the name ‘sterile neutrino’.
NR can have gauge-invariant Majorana mass MN .

� Such a model is a minimal extension of SM and also renormalizable,
called EFT1. Terms containing NR are

LEFT1
⊃ +i N̄R/∂NR −

(

L̄YN NRεH∗+
1
2

NRCMNNR +h.c.
)

(H̃ = εH∗) (27)

There are several ways to look at NR .

� If MN = 0, NR and νL form Dirac neutrinos and gain mass as the electron.
But this requires an unnaturally tiny Yukawa coupling YN .
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Matching calc at tree level – Example 3: neutrino
mass operator from type I seesaw

� Since gauge sym. allows a Majorana mass for NR , it is more natural
MN 6= 0. This has two consequences.

It breaks lepton number as an accidental sym. of SM.

It offers a way to induce a tiny neutrino mass via the seesaw mechanism.

� Assume MN ≫ electroweak scale. Integrate out N to get EFT2.

� Since N couples only to L, H , integrating it out at tree level introduces a
single effective LH interaction in EFT2 , which can be found by studying

HHLL → nothing
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Matching calc at tree level – Example 3: neutrino
mass operator from type I seesaw

In Feynman diagrams,

N N

L

H

L

H

iεY †
N iεY †

N

i
−MN

C

EFT1

=⇒ ×iεY †
N iεY †

N

EFT2

which yields a term in EFT2

LEFT2
⊃ 1

4
κgf (L

g
m)C εmnHnLf

j ε jiHi +h.c.
i , j ,m,n : SU(2)L indices
f ,g : flavor indices

(28)

1
2

κgf =−
(

YNM−1
N Y T

N

)†

gf
(29)
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