Dark Matter, Dark Energy & Neutrino Mass 暗物质,暗能量和中微子质量

理论物理前沿暑期讲习班——暗物质,中微子与粒子物理前沿 中山大学广州校区南校园 2017年7月3-28日

Lecture 1: Introduction to Particle Physics and Cosmology

Lecture 2: Some Basic Backgrounds of the Standard Model of Particle Physics

Lecture 3: Neutrino Mass Generation

Lecture 4: Theoretical Understanding of Dark Matter Detections

Lecture 5: Dark Energy and Gravitational Waves

Lecture 4: Theoretical Understanding of Dark Matter Detections

Outline

- Introduction
- Indirect Searches for Dark Matter
- Direct Detections for Dark Matter
- Conclusions

• Introduction

THE UNIVERSE, THEN

• Introduction

THE UNIVERSE, THEN AND NOW

Have we seen Dark Matter yet?

95% of the cosmic matter/energy is a mystery.

An Odyssey of Searching for Dark Matter (DM)

1783	J. Michell	light can be affected by gravity
1844	F. Bessel	the observed motion of Sirius and Procyon ~ dark stars
1846	U. L. Verrier	the anomalous precession of the perihelion of Mercury ~ dark planet
1877	A. Secchi	research on a nebulae \sim unseen matter scattered in space \sim dark clouds
End of 19 th century	Lord Kelvin	estimated the quantity of unseen matter in the galaxy & presented the upper limit on the density of matter
	H. Poincare	"matiere obscure (French)"
1922	J. Kapteyn	a quantitative model to address the possible existence of dark matter
1932	J. Oort	analyzed and derived the value of the unseen matter's local density
1933	F. Zwicky	Studied the Coma cluster \sim high mass density needed to maintain the velocity dispersion of the galaxies \sim "dark matter"
1970	V. Rubin & K. Ford	The rotational velocities of the spiral galaxies are independent of the distance away from galactic center ~ no "Keplerian decline"

Observations support Dark Matter at

- F

SNe Ia

Cosmological scale

....

Galaxy cluster scale

Concordance region:

Dark Matter: 26.8%

Independent methods (using primordial nucleosynthesis & the microwave background) convince us that the dark matter is a completely new kind of particle.

Dark matter cannot be the particle in the standard model, which has to be:

- Massive
- Non baryonic
- No charge (electric or color)
- Stable ($\tau > 10^{26}$ s, $\tau_{universe} \sim 10^{17}$ s)

Some Dark Matter Candidate Particles

How to observe dark matter?

Beyond the SM

DARK MATTER

Beyond the SM

DARK MATTER

Beyond the SM

DARK MATTER

Search for Dark Matter:

Some interaction beyond gravitation

Search for Dark Matter:

Direct detection:

(underground experiments)

Collider searches: (LHC)

Indirect detection:

(cosmic-ray experiments)

錦屏地下實驗室(CJPL): 中國首個、世界最深的地下實驗室

• Indirect Searches for Dark Matter

Space Station AMS-02

Balloon ATIC

It can discriminate $e^+, e^-, p, \overline{p}, \dots$

 $(9430 e^+ \text{ collected})$

Positrons from PAMELA:

It can discriminate $e^+, e^-, p, \overline{p}, \dots$

 $(9430 e^+ \text{ collected})$

Steep e+ excess above 10 GeV with very large flux

Antiprotons from PAMELA:

(about 1000 \bar{p} collected)

Electrons + positrons from ATIC

HESS 2008 10-1 ATIC-2 (Nature 2008) PPB-BETS (2008) EC AMS HEAT $E^3(e^-+e^+)GeV^2/cm^2 \sec$ 10-2 background ? 10-3 10² 10³ 104 10 energy in GeV

It cannot discriminate e⁺ and e⁻

An e⁺+e⁻ excess 300-800 GeV

Fermi's result: PRL102(09)181101

It cannot discriminate e⁺ and e⁻

Fermi Data

4 million events

conflict with

ATIC

arXiv:0905.0025 [astro-ph.HE]

AMS is an International Collaboration 16 Countries, 60 Institutes and 600 Physicists, 17 years

The detectors were built all over the world and assembled at CERN, near Geneva, Switzerland

AMS-02:PRL110,141102(2013)

Fermi with earth Mag.F. PRL108,011103(2002)

New Results on Positron Fraction

1. At much higher energy (up to 500 GeV)

Positron fraction

AMS days at CERN: anti-proton on April 15-17, 2015 (S. Ting)

(AMS-02: 290,000 antiprotons selected)

PRL117 (2016) 091103 (Aug. 26, 2016)

Six conditions for the evidence of Dark Matter! (S. Ting)

4. The energy beyond which it ceases to increase.

AMS-2: six conditions for Dark Matter with five seen!

AMS-2: six conditions for Dark Matter with five seen!

2. With much higher statistics

AMS-2: six conditions for Dark Matter with five seen!

Positron fraction

Possible interpretations: e⁺ and e⁺+e⁻ excesses Astrophysics: nearby pulsars Particle physics: Dark Matter (DM)

Dark matter annihilation: DM DM \longrightarrow SM SM

- 0.5 TeV < M < 1 TeV</p>
- < \(\sigma\) v> ~10⁻²⁶ cm³s⁻¹ ~10⁻⁹ GeV⁻²
- BF ~ 10² 10⁴

Dark matter decay: DM \rightarrow 2 or 3 SMs

 $M \ge 1$ TeV, $\tau \ge 10^{26}$ s

Note: the age of the universe $(4.3 \times 10^{17} \text{ s})$.

ATIC Energy Spectrum vs. KK Dark Matter [Nature 07477 (2008)] 1,000 E 30 dN/dE (m-2 S⁻¹ Sr⁻¹ GeV²) 這篇文章的第一作 100 者也是"悟空"衛星 計畫的首席科學家 10 10 100 1,000 Energy (GeV)

Figure 4 | Assuming an annihilation signature of Kaluza-Klein dark matter, all the data can be reproduced. The GALPROP general electron spectrum resulting from sources across the galaxy is shown as the dashed line. The dotted curve represents the propagated electrons from the annihilation of a Kaluza-Klein particle. The dotted curve assumes an isothermal dark matter halo of 4 kpc scale height, a local dark matter density of 0. a Kaluza-Klein mass of 620 GeV 1 cross section rate of 1 × 10 cm s 7, which implies a boost factor of 200. The sum of these signals is the solid curve. Here the spectrum is multiplied by $E^{3.0}$ for clarity. The solid curve provides a good fit to both the magnetic spectrometer data^{30,31} and calorimeter data^{16,32} and reproduces all of the measurements from 20 GeV to 2 TeV, including the cut-off in the observed excess. All error bars are one standard deviation.

Which DM can fit the data?

M.Pospelov and A.Ritz, 0810.1502: Secluded DM - A.Nelson and C.Spitzer, 0810.5167: Slightly Non-Minimal DM - Y.Nomura and J.Thaler, 0810.5397: DM through the Axion Portal - R.Harnik and G.Kribs, 0810.5557: Dirac DM - D.Feldman, Z.Liu, P.Nath, 0810.5762: Hidden Sector - T.Hambye, 0811.0172: Hidden Vector - Yin, Yuan, Liu, Zhang, Bi, Zhu, 0811.0176: Leptonically decaying DM - K.Ishiwata, S.Matsumoto, T.Moroi, 0811.0250: Superparticle DM - Y.Bai and Z.Han, 0811.0387: sUED DM - P.Fox, E.Poppitz, 0811.0399: Leptophilic DM - C.Chen, F.Takahashi, T.T.Yanagida, 0811.0477: Hidden-Gauge-Boson DM - K.Hamaguchi, E.Nakamura, S.Shirai, T.T.Yanagida, 0811.0737: Decaying DM in Composite Messenger - E.Ponton, L.Randall, 0811.1029: Singlet DM - A.Ibarra, D.Tran, 0811.1555: Decaying DM - S.Baek, P.Ko, 0811.1646: U(1) Lmu-Ltau DM - C.Chen, F.Takahashi, T.T.Yanagida, 0811.3357: Decaying Hidden-Gauge-Boson DM -I.Cholis, G.Dobler, D.Finkbeiner, L.Goodenough, N.Weiner, 0811.3641: 700+ GeV WIMP - E.Nardi, F.Sannino, A.Strumia, 0811.4153: Decaying DM in TechniColor - K.Zurek, 0811.4429: Multicomponent DM - M.Ibe, H.Murayama, T.T.Yanagida, 0812.0072: Breit-Wigner enhancement of DM annihilation - E.Chun, J.-C.Park, 0812.0308: sub-GeV hidden U(1) in GMSB - M.Lattanzi, J.Silk, 0812.0360: Sommerfeld enhancement in cold substructures - M.Pospelov, M.Trott, 0812.0432: super-WIMPs decays DM - Zhang, Bi, Liu, Liu, Yin, Yuan, Zhu, 0812.0522: Discrimination with SR and IC - Liu, Yin, Zhu, 0812.0964: DMnu from GC - M.Pohl, 0812.1174: electrons from DM - J.Hisano, M.Kawasaki, K.Kohri, K.Nakayama, 0812.0219: DMnu from GC -A.Arvanitaki, S.Dimopoulos, S.Dubovsky, P.Graham, R.Harnik, S.Rajendran, 0812.2075: Decaying DM in GUTs - R.Allahverdi, B.Dutta, K.Richardson-McDaniel, Y.Santoso, 0812.2196: SuSy B-L DM- S.Hamaguchi, K.Shirai, T.T.Yanagida, 0812.2374: Hidden-Fermion DM decays - D.Hooper, A.Stebbins, K.Zurek, 0812.3202: Nearby DM clump - C.Delaunay, P.Fox, G.Perez, 0812.3331: DMnu from Earth - Park, Shu, 0901.0720: Split-UED DM - <u>.Gogoladze</u>, <u>R.Khalid</u>, <u>Q.Shafi</u>, <u>H.Yuksel</u>, 0901.0923: cMSSM DM with additions - Q.H.Cao, E.Ma, G.Shaughnessy, 0901.1334: Dark Matter: the leptonic connection - E.Nezri, <u>M.Tytgat</u>, G.Vertongen, 0901.2556: Inert Doublet DM C.-H.Chen, C.-Q.Geng, D.Zhuridov, 0901.2681: Fermionic decaying DM J.Mardon, Y.Nomura, D.Stolarski, J.Thaler, 0901.2920. Cascade annihilations (light non-abelian new bosons) - P.Meade, M.Papucci, T.Volansky, 0901.2925: DM sees the light - D.Phalen, A.Pierce, N.Weiner, 0901.3165: New Heavy Lepton - T.Banks, J.-F.Fortin, 0901.3578: Pyrma baryons - Goh, Hall, Kumar, 0902.0814: Leptonic Higgs - K.Bae, J.-H. Huh, J.Kim, B.Kyae, R.Viollier, 0812.3511: electrophilic axion from flipped-SU(5) with extra spontaneously broken symmetries and a two component DM with Z₂ parity - ...

Which DM can fit the data?

C.-H.Chen, C.-Q.Geng, D.Zhuridov, 0901.2681: Fermionic decaying DM

Phys.Lett. B675, 77 (2009)

C.H.Chen, C.Q.Geng, D.Zhuridov, JCAP 0910, 001 (2009) [0906.1646 [hep-ph]], Neutrino Masses, Leptogenesis and Decaying Dark Matter

C.Q.Geng, D.Huang, L.H.Tsai, PRD89, 055021 (2014) [1312.0366 [hep-ph]], Imprint of Multicomponent Dark Matter on AMS-02

C.Q.Geng, D.Huang, C.Lai, PRD91, (2015) [1411.3813 [astro-ph]], Revisiting Multicomponent Dark Matter with New AMS-02 Data

The total e⁻ and e⁺ fluxes are:

$$\begin{split} \Phi_{e^-} &= \kappa \, \Phi_{e^-}^{prim} + \Phi_{e^-}^{DM} + \Phi_{e^-}^{sec} \\ \Phi_{e^+} &= \Phi_{e^+}^{DM} + \Phi_{e^+}^{sec}, \end{split}$$

κ: the uncertainty in primary e⁻ normalization

Background:

Fermionic Decaying DM model:

New Particles: 1 scalar doublet η; 2 neutral leptons N_k

C.H.Chen, C.Q.Geng, D.Zhuridov, PLB675(09)77 [0901.2681 [hep-ph]]

— A minimal model

New particles are odd under Z₂ symmetry

The new Majorana mass term and Yukawa couplings can be written as

 $M_k N_k N_k + y_{ik} \overline{L}_i \eta N_k + \text{H.c.},$

where L is the lepton doublet and i, k are the flavor indexes. We consider the mass spectrum $M_1 < M_2 < M_{\eta}$.

+SM

ATIC and PAMELA can be fitted well simultaneously

ATIC and PAMELA can be fitted well simultaneously BUT Fermi and PAMELA canNOT

A dark matter model with realistic	Particle Za	ζ η _ +	N_i N	+ SM							
Chen, CQG and Zhuridov, JCAP 10, 001 (2009) arXiv:0906.1646 [hep-ph]	Z_2 Z'_2	+ -	+ -								
$\frac{M_{ij}}{2}N_i^T C N_j + \frac{M}{2}N^T C N + y_{ij}\bar{L}_i\zeta N_j + y_i'\bar{L}_i\eta N + \mu^2\eta^{\dagger}\zeta + \frac{\lambda}{2}(\phi^{\dagger}\zeta)^2 + \text{H.c.},$											
Neutrino masses: $(m_{\nu})_{ij} = \frac{\mathcal{O}(\lambda)}{16\pi^2} \sum_{k=1}^{2} \frac{y_{ik}y_{jk}}{M_k} v^2$	$\langle \phi \rangle$	×	ζ^0								
$m_{\nu} = \mathcal{O}(0.01 - 0.1 \text{ eV}) \text{ if } \lambda = \mathcal{O}(10^{-4}), \ y_{ij} = \mathcal{O}(10^{-3})$ $M_i = \mathcal{O}(100 \text{ GeV} - 10 \text{ TeV}).$ $\overline{\nu_i}$	·	N_k	ν	<u> </u>							

Leptogenesis:

$$\varepsilon \simeq -\frac{3}{16\pi} \frac{1}{(y^{\dagger}y)_{11}} \operatorname{Im} \left[(y^{\dagger}y)_{12}^{2} \right] \frac{M_{1}}{M_{2}}.$$

$$\frac{n_{B}}{s} \simeq -\frac{1}{15} \frac{\varepsilon}{g_{*}} \simeq 10^{-10}$$

$$\stackrel{N_{1}}{\longrightarrow} \stackrel{\ell_{i}}{\longleftarrow} \stackrel{\eta_{i}}{\longleftarrow} \stackrel{\eta$$

 $g_* \simeq 100$

DM decays:

$$\begin{split} \Gamma_i &= \frac{|y_i'|^2}{4\pi} \left(\frac{|\mu|}{M_{\eta}}\right)^4 \frac{M_-^2}{M}, \quad \tau_N = \frac{1}{4\sum_i \Gamma_i} = \frac{\pi A^4 M}{M_-^2} \\ A &= \frac{M_{\eta}}{|\mu| (\sum_i |y_i'|^2)^{1/4}}, \quad M_{\pm} = \frac{M^2 \pm M_{\zeta}^2}{2M} \quad \mathcal{E} = |y_{\mu}'|^2 / |y_e'|^2 \end{split}$$

FIG. 3: Diagram for the DM decay.

 $\tau_N = 2.5 \times 10^{26} \text{ s}, M = 2 \text{ TeV}, M_{\zeta} = 500 \text{ GeV}$

Fit Fermi and PAMELA well if the muon effect is large

Multi-component Dark Matter

CQG,Huang,Tsai,PRD89(2014)055021 CQG,Huang,Lai, PRD91(2015)095006

AMS-02 Positron Fraction Spectrum

Femi-LAT e^++e^- Spectrum

Observations:

 The excess of total e⁺+e⁻ flux by Fermi-LAT extends to 1 TeV, at least one DM cutoff should be larger than 1 TeV;

Multi-component Dark Matter

CQG,Huang,Tsai,PRD89(2014)055021 CQG,Huang,Lai, PRD91(2015)095006

AMS-02 Positron Fraction Spectrum

Femi-LAT e^++e^- **Spectrum**

Observations:

- The excess of total e⁺+e⁻ flux by Fermi-LAT extends to 1 TeV, at least one DM cutoff should be larger than 1 TeV;
- The substructure at around 100 GeV could result from some additional lighter DM.

CQG, D.Huang, C.Lai, PRD91 (2015) 095006 "Revisiting Multicomponent Dark Matter with New AMS-02 Data"

$$\Phi_e^{(\text{tot})} = \kappa_1 \Phi_e^{(\text{primary})} + \kappa_2 \Phi_e^{(\text{secondary})} + \Phi_e^{\text{DM}},$$
$$\Phi_p^{(\text{tot})} = \kappa_2 \Phi_p^{(\text{secondary})} + \Phi_p^{\text{DM}}.$$

 $\left(\frac{dN_{e,p}}{dE}\right)_i = \frac{1}{2} \left[\epsilon_i^e \left(\frac{dN^e}{dE}\right)_i + \epsilon_i^\mu \left(\frac{dN^\mu}{dE}\right)_i + \epsilon_i^\tau \left(\frac{dN^\tau}{dE}\right)_i \right],$

 E_{cL} of DM_L (416 GeV) is fixed to be 100 GeV with M_Y=300 GeV AMS-02 PRL110, 141102 (2013) PRL113, 121101 (2014) PRL113, 121102 (2014)

140 data points: e⁺ fraction: 42+1 e⁺ flux: 48 e⁻ flux: 49 (E > 10 GeV)

$E_{cH}(\text{GeV})$	κ_1	κ_2	$\epsilon^e_{H,L}$	$\epsilon^{\mu}_{H,L}$	$\epsilon_{H,L}^\tau$	$\tau_{H,L}(10^{26}{\rm s})$	$\chi^2_{\rm min}$	$\chi^2_{\rm min}/{\rm d.o.f.}$
600	0.94	1.49	0.18, 0.02	0.74, 0.00	0.08, 0.98	1.52, 1.34	102	0.78
800	0.94	1.49	0.05, 0.02	0.65, 0.00	0.30, 0.98	1.08, 1.39	102	0.78
1200	0.94	1.50	0.00, 0.01	0.80, 0.00	0.20, 0.99	0.62, 1.61	102	0.78
1500	0.94	1.50	0.00, 0.04	1.00, 0.17	0.00, 0.79	0.60, 1.98	105	0.81

FIG. 2. (a) Electron flux, (b) positron flux, (c) positron fraction, and (d) total $e^+ + e^-$ flux from the two-component DM contributions with the best-fitting parameters given in Table III for $E_{cH} = 600$, 800, 1200 and 1500 GeV, respectively.

C.Lai, D.Huang, CQG, Mod. Phys. Lett. A30, 1550188 (2015) ``Multicomponent Dark Matter in the Light of New AMS-02 Data"

E_{cL} of DM_L (416 GeV) is fixed to be 100 GeV with M_Y=300 GeV

PRL110, 141102 (2013)

PRL113, 221102 (2014)

AMS-02

10³

Need low recoil energy threshold

Direct detection experiments: SNOLab DEAP, CLEAN, Picasso, COUPP, DAMIC, SuperCDMS Soudan CDMS, CoGeNT Homestake LUX, LZ Modane EDELWEISS Canfranc ArDM, ANAIS Boulby DRIFT Gran Sasso XENON, CRESST, DAMA/LIBRA, DarkSide YangYang KIMS Jinping PandaX, CDEX Kamioka XMASS, Newage South Pole DM Ice Accelerator searches: CERN Atlas, CMS

Indirect detection experiments: Namibia HESS La Palma MAGIC Arizona VERITAS South Pole IceCube ISS AMS-02 Resurs DK-1 PAMELA Fermi Large Area Telescope

Axion searches: Washington ADMX

Veerle Tammer, 2015

WebGL Earth • Cesium • Tiles Courtesy of MapQuest

Measure the recoil energy deposited by the interaction of a WIMP particle with a nucleus in the detector

Current Status and Future Goal

Credit: Uwe Oberlack @ Darwin 2015

Recent Development

LUX2016

PandaX-II

The spin-independent WIMP-nucleon cross section limits as a function of WIMP mass at 90% confidence level (black) for this run of XENON1T. In green and yellow are the 1- and 2 σ sensitivity bands. Results from LUX (red), PandaX-II (brown), and XENON100 (gray) are shown for reference.

Reported by XENON1T on April 14, 2017 (See http://xenon1t.org/)

Positive signals

Negative limits

DAMA: Annual Modulation

CoGent, CDMS-Si: Excess in events

SuperCDMS, CDMSlite, Xenon10(100), CRESST-II, LUX, CDEX, PandaX

Positive signals

DAMA: Annual Modulation

CoGent, CDMS-Si: Excess in events

Negative limits

SuperCDMS, CDMSlite, Xenon10(100), CRESST-II, LUX, CDEX, PandaX

Possible Solutions (before LUX2013)

Isospin Violation: Tuning the couplings between n and p the sensitivities to Ge and Xe are maximally reduced

Exothermic DM: Nuclear recoiling through the down-scattering the sensitivity to light nucleus is enhanced

Light Mediator: Momentum dependent interactions,

the nuclear recoil energy spectra are changed with the light nuclei favored

After LUX2013, a single mechanism above CANNOT reconcile the CDMS-Si anomaly with other upper limits, but the combination can do the job

After new datasets from LUX2015 and SuperCDMS in 2015, we would like to know if the solutions are still valid.

 $v_{\min} = \frac{1}{\sqrt{2E_{\mathrm{nr}}m_T}} \left| \delta + \frac{m_T E_{\mathrm{nr}}}{\mu_{\chi T}} \right| \qquad \delta = m_L - m_H < 0$

Before

PandaX-II

LUX2016

Exothermic

Scattering

$$\eta(E_{\rm nr},t) = \int_{|\mathbf{v}| > v_{\rm min}} d^3 \mathbf{v} \frac{f(\mathbf{v})}{v},$$

Observables

1.0E-46

3.0

 M_{χ} (GeV)

30.0

10.0

Observables

Isospin Violation + Exothermic Interaction

Ge-phobic: ξ=-0.8

 $\xi = -0.8, \delta = -200 \text{ keV}, M_{\phi} = 200 \text{ MeV}$

 $\xi = -0.7, \delta = -200 \text{ keV}, M_{\phi} = 200 \text{ MeV}$

1.0E-39 1.0E-39 1.0E-40 1.0E-40 1.0E-41 $\sigma_p \ (cm^2)$ $\sigma_p\,(cm^2)$ 1.0E-41 1.0E-42 1.0E-42 CDMS-Si CDMS-Si 1.0E-43 SuperCDMS **SuperCDMS** 1.0E-43 CDMSlite2015 CDMSlite2015 LUX2013 LUX2013 1.0E-44 LUX2015 LUX2015 1.0E-44 1.0 3.0 0.8 0.8 1.0 3.0 M_{γ} (GeV) M_{γ} (GeV)

- Only Xe-phobic models work
- Gap becomes maximal at $\delta \sim -200$ keV

Isospin Violation + Exothermic Interaction

- Only Xe-phobic models work
- Gap becomes maximal at $\delta \sim -200$ keV

Isospin Violation + Light Mediator

 $\xi = -0.7, \delta = 0 \text{ keV}, M_{\phi} = 1 \text{ MeV}$

This mechanism cannot work under LUX2015, which excludes the whole CDMS-Si 90% region of interest

Exothermic Interaction + Light Mediator

Isospin conserved: ξ=1.0

Isospin Violation + Exothermic Interaction + Light Mediator

Xe-phobic: ξ=-0.7

Isospin Violation + Exothermic Interaction + Light Mediator

Summary

- 26.8% of the Universe: Dark Matter, which has been only seen from large scale structures with gravitational effects.
- e⁺ (e⁺+e⁻) excesses in cosmic rays in the energy range of 10-450 (10 1000) GeV have been observed by PAMELA and AMS-02 (ATIC and Fermi), with a possible substructure around 100 GeV identified, which can be explained by DM with multi-components.
- There exist some controversies between positive signals (DAMA, CoGent, CDMS-Si) and negative limits (SuperCDMS, CDMSlite, Xenon, CRESST-II, LUX, CDEX, PandaX) from direct DM searches.
 The tension between CDMS-Si and other null experiments would be reduced for Xe-phobic exothermic interactions with isospin v. + light mediator.
- To understand the real nature of Dark Matter

Solution More future data from various direct and indirect searches are needed.

